dc.creatorCarvajal X.
dc.creatorPanthee M.
dc.date2006
dc.date2015-06-30T18:02:04Z
dc.date2015-11-26T14:16:06Z
dc.date2015-06-30T18:02:04Z
dc.date2015-11-26T14:16:06Z
dc.date.accessioned2018-03-28T21:17:03Z
dc.date.available2018-03-28T21:17:03Z
dc.identifier
dc.identifierNonlinear Analysis, Theory, Methods And Applications. , v. 64, n. 1, p. 146 - 158, 2006.
dc.identifier0362546X
dc.identifier10.1016/j.na.2005.06.016
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-28244475994&partnerID=40&md5=88cd295da01d54830133e3d85133a737
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102761
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102761
dc.identifier2-s2.0-28244475994
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1242971
dc.descriptionWe prove that a sufficiently smooth solution to the initial value problem associated to the equation∂tu+iα∂x2u+β∂x3u+iγ |u|2u+δ|u|2∂xu+εu2∂xū=0,x,t∈R,is uniquely determined by its values in the semi-line at two different instants of time. © 2005 Elsevier Ltd. All rights reserved.
dc.description64
dc.description1
dc.description146
dc.description158
dc.descriptionBourgain, J., On the compactness of the support of solutions of dispersive equations (1997) Int. Math. Res. Notices, 9, pp. 437-447
dc.descriptionCarvajal, X., (2002), Ph.D. Thesis, IMPA, Rio de Janeiro, BrazilCarvajal, X., Linares, F., (2003) Some Properties for a Higher Order Nonlinear Schrödinger Equation, , Preprint
dc.descriptionCarvajal, X., Linares, F., A higher order nonlinear Schrödinger equation with variable coefficients (2003) Diff. Int. Equations, 16, pp. 1111-1130
dc.descriptionCarvajal, X., Panthee, M., Unique continuation property for a higher order nonlinear Schrödinger equation (2005) J. Math. Anal. Appl., 303 (1), pp. 188-207
dc.descriptionHasegawa, A., Kodama, Y., Nonlinear pulse propagation in a monomode dielectric guide (1987) IEEE J. Quantum Electron., 23 (5), pp. 510-524
dc.descriptionIório Jr., R.J., (2001) Unique Continuation Principles for the Benzamin-Ono Equation, , Preprint, IMPA
dc.descriptionIório Jr., R.J., (2002) Unique Continuation Principles for Some Equations of Benzamin-Ono Type, , Preprint, IMPA
dc.descriptionIsakov, V., Carleman type estimates in an anisotropic case and applications (1993) J. Diff. Equations, 105, pp. 217-238
dc.descriptionKenig, C.E., Ponce, G., Vega, L., On the support of solutions to the generalized KdV equation (2002) Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2), pp. 191-208
dc.descriptionKenig, C.E., Ponce, G., Vega, L., On the unique continuation of solutions to the generalized KdV equation (2003) Math. Res. Lett., 10 (5-6), pp. 833-846
dc.descriptionKenig, C.E., Ponce, G., Vega, L., On unique continuation for nonlinear Schrödinger equation (2003) Commun. Pure Appl. Math., 56, pp. 1247-1262
dc.descriptionKenig, C.E., Ruiz, A., Sogge, C., Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators (1987) Duke Math. J., 55, pp. 329-347
dc.descriptionKodama, Y., Optical solitons in a monomode fiber (1985) J. Statist. Phys., 39 (56), pp. 597-614
dc.descriptionLaurey, C., The Cauchy problem for a third order nonlinear Schrödinger equation (1997) Nonlinear Anal.
dc.descriptionTheory, Methods and Appl., 29, pp. 121-158
dc.descriptionMizohata, S., Unicité du prolongement des solutions pour quelques operateurs differentials paraboliques (1958) Mem. Coll. Sci. Univ. Kyoto, 31, pp. 219-239
dc.descriptionPanthee, M., A note on the unique continuation property for Zakharov-Kuznetsov equation (2004) Nonlinear Anal.
dc.descriptionTheory, Methods and Appl., 59 (3), pp. 425-438
dc.descriptionPanthee, M., Unique continuation property for the Kadomtsev-Petviashvili (KP-II) equation (2005) Electron. J. Diff. Equations, 2005 (59), pp. 1-12
dc.descriptionSaut, J.C., Scheurer, B., Unique continuation for some evolution equations (1987) J. Diff. Equations, 66, pp. 118-139
dc.descriptionStaffilani, G., On the generalized Korteweg-de Vries-type equations (1997) Diff. Int. Equations, 10 (4), pp. 777-796
dc.descriptionTataru, D., Carleman type estimates and unique continuation for the Schrödinger equation (1995) Diff. Int. Equations, 8 (4), pp. 901-905
dc.descriptionZhang, B., Unique continuation for the Korteweg-de Vries equation (1992) SIAM J. Math. Anal., 23, pp. 55-71
dc.languageen
dc.publisher
dc.relationNonlinear Analysis, Theory, Methods and Applications
dc.rightsfechado
dc.sourceScopus
dc.titleOn Uniqueness Of Solution For A Nonlinear Schrödinger-airy Equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución