dc.creatorPadilha L.A.
dc.creatorFu J.
dc.creatorNootz G.
dc.creatorHagan D.J.
dc.creatorVan Stryland E.W.
dc.creatorBuso D.
dc.creatorMartucci A.
dc.creatorCesar C.L.
dc.creatorBarbosa L.C.
dc.creatorCruz C.H.B.
dc.date2006
dc.date2015-06-30T18:02:02Z
dc.date2015-11-26T14:15:57Z
dc.date2015-06-30T18:02:02Z
dc.date2015-11-26T14:15:57Z
dc.date.accessioned2018-03-28T21:16:53Z
dc.date.available2018-03-28T21:16:53Z
dc.identifier0819464066; 9780819464064
dc.identifierProceedings Of Spie - The International Society For Optical Engineering. , v. 6327, n. , p. - , 2006.
dc.identifier0277786X
dc.identifier10.1117/12.681160
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33751078623&partnerID=40&md5=ce41bd79258ef2fe582f4dbeeb9c7a97
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102757
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102757
dc.identifier2-s2.0-33751078623
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1242932
dc.descriptionWe present degenerate and nondegenerate two-photon absorption spectra in a series of CdSe and CdTe quantum dots. The measurements show that the two-photon absorption (2PA) spectrum is strongly dependent on the quantum dot size and that the 2PA coefficient decreases as the quantum dot size decreases, and it is larger for the frequency nondegenerate process. Previously we had shown a theoretical analysis of these results based on a simple model using the effective mass approximation. Although this model works well for larger quantum dots, it fails for the smaller ones. Here we use the more realistic k→ p→ model for the band structure and consider the hole band mixing in quantum dots to describe our data. This theory better describes the spectral structures for smaller quantum dots and also predicts the decrease of the 2PA coefficient with the decrease of quantum dot size. This is due to the reduction of the number of possible transitions and the blue shift of the optical bandgap from quantum confinement. This theory predicts the reduction of the 2PA coefficient with size, although our experimental results show an even stronger reduction.
dc.description6327
dc.description
dc.description
dc.description
dc.descriptionLarson, D.R., Zipfel, W.R., Willians, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., Webb, W.W., (2003) Science, 300, pp. 1434-1436
dc.descriptionSargent, E.H., (2005) Adv. Matt., 17, pp. 515-522
dc.descriptionPadilha, L.A., Neves, A.A.R., Rodriguez, E., Cesar, C.L., Barobosa, L.C., Cruz, C.H.B., (2005) Appl. Phys. Lett., 86, pp. 1611111-1611113
dc.descriptionUskov, A.V., O'Reilly, E.P., Manning, R.J., Webb, R.P., Cotter, D., Laemmlin, M., Ledentsov, N.N., Bimberg, D., (2004) IEEE Phot. Tech. Lett, 16, pp. 1265-1267
dc.descriptionCerletti, V., Coish, W.A., Gywat, O., Loss, D., (2005) Nanotech., 16, pp. R27-R49
dc.descriptionSercel, P.C., Vahala, K.J., (1990) Phys. Rev. B, 42, pp. 3690-3710
dc.descriptionCotter, D., Burt, M.G., Manning, R.J., (1992) Phys. Rev. Lett., 68, pp. 1200-1203
dc.descriptionSeo, J.T., Yang, Q., Creekmore, S., Temple, D., Qu, L., Yu, W., Wang, A., Kim, J.H., (2003) Phys. E, 17, pp. 101-103
dc.descriptionBanfi, G.P., Degiorgio, V., Ricard, D., (1998) Adv. Phys., 47, pp. 447-510
dc.descriptionPadilha, L.A., Fu, J., Hagan, D.J., Van Stryland, E.W., Cesar, C.L., Barbosa, L.C., Cruz, C.H.B., (2005) Opt. Exp., 13, pp. 6460-6467
dc.descriptionPadilha, L.A., Fu, J., Hagan, D.J., Van Stryland, E.W., Cesar, C.L., Barbosa, L.C., Cruz, C.H.B., (2005) Proc. SPIE, 5931, pp. 226-235
dc.descriptionFedorov, A.V., Baranv, A.V., Inoue, K., (1996) Phys. Rev. B, 54, pp. 8627-8632
dc.descriptionSheik-Bahae, M., Said, A.A., Wei, T.H., Hagan, D.J., Van Stryland, E.W., (1990) IEEE J. of Quantum Electron., 26, pp. 760-769
dc.descriptionNegres, R.A., Hales, J.M., Kobyakov, A., Hagan, D.J., Van Stryland, E.W., (2002) IEEE J. Quantum Electron., 38, pp. 1205-1216
dc.descriptionHales, J.M., Hagan, D.J., Van Stryland, E.W., Schafer, K.J., Morales, A.R., Belfield, K.D., Pacher, P., Bredas, J.L., (2004) J. Chem. Phys., 121, pp. 3152-3160
dc.descriptionBarbosa, L.C., Reynoso, V.C.S., De Paula, A.M., De Oliveira, C.R.M., Alves, O.L., Craievich, A.F., Marotti, R.E., Cesar, C.L., (1997) J. Non-cryst. Solids, 219, pp. 205-211
dc.descriptionYu, W.W., Qu, L.H., Guo, W.Z., Peng, X.G., (2003) Chem. Mater., 15, p. 2854
dc.descriptionBunge, S.D., Krueger, K.M., Boyle, T.J., Rodriguez, M.A., Headley, T.J., Colvin, V.L., (2003) J. Mater. Chem., 13, p. 1705
dc.descriptionQu, L.H., Peng, X.G., (2002) J. Am. Chem. Soc., 124, p. 2049
dc.descriptionL.A. Padilha, J. Fu, D.J. Hagan, E.W. Van Stryland, C.L. Cesar, L.C. Barbosa, C.H.B. Cruz, D. Buso, and A. Martucci, to be published (2006)Kane, E.O., Semiconductors & Semimetals, 1. , Cap. 3
dc.descriptionEkimov, A.I., Hache, F., Schanne-Klein, M.C., Richard, D., Flytzanis, C., Kudryavtsev, I.A., Yazeva, T.V., Efros, Al.L., (1993) J. Opt. Soc. Am. B, 10, pp. 100-107
dc.languageen
dc.publisher
dc.relationProceedings of SPIE - The International Society for Optical Engineering
dc.rightsaberto
dc.sourceScopus
dc.titleTwo-photon Absorption In Direct Bandgap Semiconductors Quantum Dots
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución