dc.creatorFernandez R.
dc.creatorFerrari P.A.
dc.creatorGarcia N.L.
dc.date2001
dc.date2015-06-26T14:42:38Z
dc.date2015-11-26T14:15:40Z
dc.date2015-06-26T14:42:38Z
dc.date2015-11-26T14:15:40Z
dc.date.accessioned2018-03-28T21:16:36Z
dc.date.available2018-03-28T21:16:36Z
dc.identifier
dc.identifierAnnals Of Probability. , v. 29, n. 2, p. 902 - 937, 2001.
dc.identifier911798
dc.identifier10.1214/aop/1008956697
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0035537297&partnerID=40&md5=568c727c751accfb5ef3fae87a6202cb
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/94881
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/94881
dc.identifier2-s2.0-0035537297
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1242860
dc.descriptionWe present a probabilistic approach for the study of systems with exclusions in the regime traditionally studied via cluster-expansion methods. In this paper we focus on its application for the gases of Peierls contours found in the study of the Ising model at low temperatures, but most of the results are general. We realize the equilibrium measure as the invariant measure of a loss network process whose existence is ensured by a subcriticality condition of a dominant branching process. In this regime the approach yields, besides existence and uniqueness of the measure, properties such as exponential space convergence and mixing, and a central limit theorem. The loss network converges exponentially fast to the equilibrium measure, without metastable traps. This convergence is faster at low temperatures, where it leads to the proof of an asymptotic Poisson distribution of contours. Our results on the mixing properties of the measure are comparable to those obtained with "duplicated-variables expansion," used to treat systems with disorder and coupled map lattices. It works in a larger region of validity than usual cluster-expansion formalisms, and it is not tied to the analyticity of the pressure. In fact, it does not lead to any kind of expansion for the latter, and the properties of the equilibrium measure are obtained without resorting to combinatorial or complex analysis techniques.
dc.description29
dc.description2
dc.description902
dc.description937
dc.descriptionAthreya, K.B., Ney, P.E., (1972) Branching Processes, , Springer, New York
dc.descriptionBaddeley, A.J., Van Lieshout, M.N.M., Area-interaction point processes (1995) Ann. Inst. Statist. Math., 47, pp. 601-619
dc.descriptionBolthausen, E., On the central limit theorem for stationary mixing random fields (1982) Ann. Probab., 10, pp. 1047-1050
dc.descriptionBorgs, C., Imbrie, J.Z., A unified approach to phase diagrams in field theory and statistical mechanics (1989) Comm. Math. Phys., 123, pp. 305-328
dc.descriptionBricmont, J., Kupiainen, A., High temperature expansions and dynamical systems (1996) Comm. Math. Phys., 178, pp. 703-732
dc.descriptionBricmont, J., Kupiainen, A., Infinite-dimensional SRB measures: Lattice dynamics (1997) Phys. D, 103, pp. 18-33
dc.descriptionBrockmeyer, E., Halstrøm, H.L., Jensen, A., The life and works of A. K. Erlang (1948) Trans. Danish Acad. Tech. Sci.
dc.description(1960) Acta Polytech. Scand., 287
dc.descriptionBrydges, D.C., A short cluster in cluster expansions (1984) Critical Phenomena, Random Systems, Gauge Theories, pp. 129-183. , (K. Osterwalder and R. Stora, eds.) North-Holland, Amsterdam
dc.descriptionDobhushin, R.L., Existence of a phase transition in the two-dimensional and three-dimensional Ising models (1965) Theory Probab. Appl., 10, pp. 193-213
dc.descriptionSoviet Phys. Dok., 10, pp. 111-113
dc.descriptionDobrushin, R.L., Estimates of semiinvariants for the Ising model at low temperatures (1996) Topics in Statistics and Theoretical Physics. Amer. Math. Soc. Transl. Ser. 2, 177, pp. 59-81
dc.descriptionDobrushin, R.L., Perturbation methods of the theory of Gibbsian fields (1996) École d'Été de Probabilités de Saint-Flour XXIV. Lecture Notes in Math., 1648, pp. 1-66. , Springer, New York
dc.descriptionVon Dreifus, H., Klein, A., Perez, J.F., Taming Griffiths' singularities: Infinite differentiability of quenched correlation functions (1995) Comm. Math. Phys., 170, pp. 21-39
dc.descriptionDurrett, R., Ten lectures on particle systems (1995) Lectures on Probability Theory, pp. 97-201. , Springer, Berlin
dc.descriptionFernández, R., Ferrari, P.A., Garcia, N., Measures on contour, polymer or animal models: A probabilistic approach (1998) Markov Process. Related Fields, 4, pp. 479-497
dc.descriptionFernández, R., Ferrari, P.A., Garcia, N., (1999) Perfect Simulation of Fixed-routing Loss Networks: Application to the Low-temperature Ising Model, , Unpublished manuscript
dc.descriptionFerrari, P.A., Garcia, N., One-dimensional loss networks and conditioned M/G/∞ queues (1998) J. Appl. Probab., 35, pp. 963-975
dc.descriptionGriffiths, R.B., Peierls' proof of spontaneous magnetization in a two dimensional Ising ferromagnet (1964) Phys. Rev. A, 136, pp. 437-439
dc.descriptionHall, P., On continuum percolation (1985) Ann. Probab., 13, pp. 1250-1266
dc.descriptionHall, P., (1988) Introduction to the Theory of Coverage Processes, , Wiley, New York
dc.descriptionHarris, T.E., The theory of branching processes (1963) Grundlehren Math. Wiss., 119
dc.descriptionHarris, T.E., Nearest-neighbor Markov interaction processes on multidimensional lattices (1972) Adv. in Math., 9, pp. 66-89
dc.descriptionKelly, F.P., Loss networks (1991) Ann. Appl. Probab., 1, pp. 319-378
dc.descriptionKendall, W.S., On some weighted Boolean models (1997) Proceedings of the International Symposium on Advances in Theory and Applications of Random Sets, pp. 105-120. , World Scientific, River Edge, NJ
dc.descriptionKendall, W.S., Perfect simulation for the area-interaction point process (1998) Probability Towards 2000, pp. 218-234. , Springer, New York
dc.descriptionKotecký, R., Preiss, D., Cluster expansion for abstract polymer models (1986) Comm. Math. Phys., 103, pp. 491-498
dc.descriptionLiggett, T.M., (1985) Interacting Particle Systems, , Springer, New York
dc.descriptionLiggett, T.M., Improved upper bounds for the contact process critical value (1995) Ann. Probab., 23, pp. 697-723
dc.descriptionMalyshev, V.A., Cluster expansions in lattice models of statistical physics and quantum theory of fields (1980) Russian Math. Surveys, 35, pp. 1-62
dc.descriptionNeveu, J., Processus ponctuels (1977) École d'Été de Probabilités de Saint-Flour VI. Lecture Notes in Math., 598, pp. 249-445. , Springer, Berlin
dc.descriptionPeierls, R., On Ising's model of ferromagnetism (1936) Math. Proc. Cambridge Philos. Soc., 32, pp. 477-481
dc.descriptionSeiler, E., (1982) Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics. Lecture Notes in Phys., 159. , Springer, Berlin
dc.descriptionZahradník, E., An alternate version of Pirogov-Sinai theory (1984) Comm. Math. Phys., 93, pp. 559-5581
dc.languageen
dc.publisher
dc.relationAnnals of Probability
dc.rightsaberto
dc.sourceScopus
dc.titleLoss Network Representation Of Peierls Contours
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución