dc.creatorSalgado R.M.
dc.creatorOhishi T.
dc.creatorBallini R.
dc.date2004
dc.date2015-06-26T14:25:34Z
dc.date2015-11-26T14:15:17Z
dc.date2015-06-26T14:25:34Z
dc.date2015-11-26T14:15:17Z
dc.date.accessioned2018-03-28T21:16:12Z
dc.date.available2018-03-28T21:16:12Z
dc.identifier078038718X
dc.identifier2004 Ieee Pes Power Systems Conference And Exposition. , v. 3, n. , p. 1251 - 1256, 2004.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-15944412089&partnerID=40&md5=915cbc57ecb000c5413bf99bd2ce19e9
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/94790
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/94790
dc.identifier2-s2.0-15944412089
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1242761
dc.descriptionThis paper proposes the clustering of a set of busses through a fuzzy c-means clustering approach. The utilization of fuzzy techniques in a clustering problem aims the attainment of a partition fuzzy in the data set, allowing degrees of relationship between different elements of the set, this way, an element can belong to more than one group with different membership value. In this paper the clustering algorithm aims at exploring data characteristics and determining groups composed by busses with similar bus daily load. Results show the efficiency of the clustering method, where the data was classified into distinct groups such as: commercial, residential and industrial consumption profiles. © 2004 IEEE.
dc.description3
dc.description
dc.description1251
dc.description1256
dc.descriptionBacker, E., (1995) Computer Assisted Reasoning in Cluster Analysis, , Prentice Hall, New York
dc.descriptionBezdek, J., (1981) Pattern Recognition with Fuzzy Objective Function Algorithms, , Plenum Press, New York
dc.descriptionBezdek, C.J., Pal, S.K., (1992) Fuzzy Models for Pattern Recognition, , IEEE Press, New York
dc.descriptionGath, I., Geva, B., Unsupervised optimal fuzzy clustering (1989) IEEE Transac. Pattern Analysis MAchine Intelligence, PAMI-11 (7), pp. 773-781. , July
dc.descriptionOh, K.J., Han, I., An intelligent clustering forecasting system based on change-point detection and artificial neural networks: Application to financial economics (2001) Proceedings of the 34th Hawaii International Conference on System Science
dc.descriptionGeva, A.B., Non-stationary time series prediction using fuzzy clustering (1999) Proceedings of the 18th International Conference of the North American Fuzzy Information Processing Society, pp. 413-417
dc.descriptionHan, J., Gong, W., Yin, Y., Mining segment-wise periodic patters in time-related databases (1998) Proceedings of the Conf. Knowledge Discovery and Data Mining, pp. 214-218
dc.descriptionHan, J., Dong, G., Yin, Y., Efficient mining of partial periodic patterns in time series database (1999) Proceedings of the Int. Conf. Data Engineering
dc.descriptionGavrilov, M., Anguelov, D., Indyk, P., Motwani, R., Mining the sotck market: Cluster discovery (2000) Proceedings of the Int. Conf. Knowledge Discovery and Data Mining
dc.descriptionLast, M., Klein, Y., Kandel, A., Knowlegde discovery in time series databases (2001) IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, 31 (1), pp. 160-169. , February
dc.descriptionDuda, R.O., Hart, P.E., (1973) Pattern Classification and Scene Analysis, , New York: Wiley
dc.languageen
dc.publisher
dc.relation2004 IEEE PES Power Systems Conference and Exposition
dc.rightsfechado
dc.sourceScopus
dc.titleClustering Bus Load Curves
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución