dc.creatorReis R.W.
dc.creatorDos Santos Filho S.G.
dc.creatorDoi I.
dc.creatorSwart J.W.
dc.date2004
dc.date2015-06-26T14:25:32Z
dc.date2015-11-26T14:15:17Z
dc.date2015-06-26T14:25:32Z
dc.date2015-11-26T14:15:17Z
dc.date.accessioned2018-03-28T21:16:12Z
dc.date.available2018-03-28T21:16:12Z
dc.identifier
dc.identifierProceedings - Electrochemical Society. , v. 3, n. , p. 357 - 362, 2004.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-17044387765&partnerID=40&md5=f82c4777fe1bad657ce8b51befae85d6
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/94781
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/94781
dc.identifier2-s2.0-17044387765
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1242759
dc.descriptionThermal stability of nickel suicide was reached using a thin Pt (1.5nm)/Pd (3.0 nm) interlayer between As-doped silicon and nickel (30 nm). A shallow contact structure was fabricated and characterized using Ni (Pt/Pd) suicides formed at temperature ranging from 350 to 800 °C for 120s. The Ni (Pt/Pd) suicide films were characterized by Rutherford Backscattering (RBS) spectrometry, X-Ray Diffraction (XRD) analysis, Atomic Force Microscopy (AFM) and four probe measurements. From these techniques, crystallographic phases (XRD), surface and interface micro-roughness (AFM) and, suicide stoichiometry and thickness by using RUMP simulations of the RBS spectra were obtained. The nickel suicide structure resulted a mixture of several phases (Ni 2Si, NiSi 2, Ni 3Si or Ni 31Si 12) with an average stoichiometry NiSi for rapid thermal annealing at 600 °C for 120 s. Also, this processing led to suicide with low interface RMS roughness (<0.7nm) and low resistivity (25.7 μΩ.cm). I-V curves were extracted from silicided n+p diodes, resulting in low reverse current density of 220 nA/cm 2 and ideality factor of 1.3.
dc.description3
dc.description
dc.description357
dc.description362
dc.descriptionColgan, E.G., Gambino, J.P., Hong, Q.Z., (1996) Mater. Sci. Eng. R., 16, p. 43
dc.descriptionMaex, K., (1993) Mater. Sci. Eng. R., 11, p. 53
dc.descriptionBeyers, R., Sinclair, R., (1985) J. Appl. Phys., 57, p. 5240
dc.descriptionClevenger, L.A., Harper, J.M.E., Cabral Jr., C., Nobili, C., Ottaviani, G., Mann, R., (1992) J. Appl. Phys., 72, p. 4978
dc.descriptionMa, Z., Allen, L.H., (1994) Phys. Rev. B, 49, p. 13501
dc.descriptionMukai, R., Ozawa, S., Yagi, H., (1994) 11th Int. VLSI Multilevel Interconnection, p. 343. , Conf. Santa Clara, CA
dc.descriptionMorimoto, T., Ohguro, T., Momose, H., (1995) IEEE Trans. Electron Devices, 42, p. 915
dc.descriptionPoon, M.C., (2000) Applied Surface Science, 157, pp. 29-34
dc.descriptionReis, R.W., (2003) Microelectronics Technology and Devices Sbmicro/2003, PV 2003-9, p. 259. , J. A. Martino, M. A. Pavanello and N. I. Morimoto, Editors, The Electrochemical Society Proceedings Series, Pennington, NJ
dc.descriptionTung, R.T., (1997) Applied Surface Science, 117-118, pp. 268-274
dc.descriptionCheng, L.W., (2000) J. Vac. Sci. Technol., A, 18 (4), pp. 1176-1179
dc.descriptionLiu, J.F., (2000) Journal of Crystal Growth, 220, pp. 488-493
dc.descriptionKern, W., (1970) RCA Rev., 31, p. 187
dc.descriptionKern, W., (1990) Journal of the Electrochemical Society, 137, p. 1887
dc.descriptionMayer, J.W., (1989) RUMP User Guide, pp. l-67. , California, USA
dc.descriptionDoolittle, L.R., (1985) Nucl. Instr. and Meth., 89, p. 334
dc.languageen
dc.publisher
dc.relationProceedings - Electrochemical Society
dc.rightsfechado
dc.sourceScopus
dc.titleFormation Of Nickel Silicides Onto As-doped Silicon Using A Thin Pt/pd Interlayer
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución