dc.creatorRodrigues Jr. W.A.
dc.date2004
dc.date2015-06-26T14:25:23Z
dc.date2015-11-26T14:14:56Z
dc.date2015-06-26T14:25:23Z
dc.date2015-11-26T14:14:56Z
dc.date.accessioned2018-03-28T21:15:47Z
dc.date.available2018-03-28T21:15:47Z
dc.identifier
dc.identifierJournal Of Mathematical Physics. , v. 45, n. 7, p. 2908 - 2944, 2004.
dc.identifier222488
dc.identifier10.1063/1.1757037
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-3543081718&partnerID=40&md5=185205b36bce2d480f3287a34b5eb164
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/94742
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/94742
dc.identifier2-s2.0-3543081718
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1242656
dc.descriptionAlmost all presentations of Dirac theory in first or second quantization in physics (and mathematics) textbooks make use of covariant Dirac spinor fields. An exception is the presentation of that theory (first quantization) offered originally by Hestenes and now used by many authors. There, a new concept of spinor field (as a sum of nonhomogeneous even multivectors fields) is used. However, a careful analysis (detailed below) shows that the original Hestenes definition cannot be correct since it conflicts with the meaning of the Fierz identities. In this paper we start a program dedicated to the examination of the mathematical and physical basis for a comprehensive definition of the objects used by Hestenes. In order to do that we give a preliminary definition of algebraic spinor fields (ASF) and Dirac-Hestenes spinor fields (DHSF) on Minkowski space-time as some equivalence classes of pairs (ξu, ψu), where ξu is a spinorial frame field and ψu is an appropriate sum of multivectors fields (to be specified below). The necessity of our definitions are shown by a careful analysis of possible formulations of Dirac theory and the meaning of the set of Fierz identities associated with the bilinear covariants (on Minkowski space-time) made with ASF or DHSF. We believe that the present paper clarifies some misunderstandings (past and recent) appearing on the literature of the subject. It will be followed by a sequel paper where definitive definitions of ASF and DHSF are given as appropriate sections of a vector bundle called the left spin-Clifford bundle. The bundle formulation is essential in order to be possible to produce a coherent theory for the covariant derivatives of these fields on arbitrary Riemann-Cartan space-times. The present paper contains also Appendixes A-E which exhibits a truly useful collection of results concerning the theory of Clifford algebras (including many tricks of the trade) necessary for the intelligibility of the text. © 2004 American Institute of Physics.
dc.description45
dc.description7
dc.description2908
dc.description2944
dc.descriptionAblamowicz, R., Fauser, B., (2000) Clifford Algebras and Their Applications in Mathematical Physics, Vol. 1
dc.descriptionAlgebra and Physics, 1. , Birkhauser, Boston
dc.descriptionAblamowicz, R., Clifford algebras (2004) Progress in Mathematical Physics, 34. , Birkhauser, Boston
dc.descriptionAblamowicz, R., Sobczyk, G., (2004) Lectures on Clifford (Geometric) Algebras and Applications, , Birkhauser, Boston
dc.descriptionAdler, S.L., (1995) Quaternionic Quantum Mechanics and Quantum Fields, , Oxford University Press, Oxford
dc.descriptionAharonov, Y., Susskind, L., Observality of the sign of spinors under a 2π rotation (1967) Phys. Rev., 158, pp. 1237-1238
dc.descriptionAtyah, M.F., Bott, R., Shapiro, A., Clifford modules (1964) Topology, 3, pp. 3-38
dc.descriptionAshdown, M.A.J., Somarro, S.S., Gull, S.F., Doran, C.J.L., Multilinear representations of rotation groups within geometric algebra (1998) J. Math. Phys., 39, pp. 1566-1588
dc.descriptionBarut, A.O., Bracken, X., Zitterbewegung and the internal geometry of the electron (1981) Phys. Rev. D, 23, pp. 2454-2463
dc.descriptionBarut, A.O., Zanghi, N., Classical model of the Dirac electron (1984) Phys. Rev. Lett., 52, pp. 2009-2012
dc.descriptionBarut, A.O., Excited states of Zitterbewegung (1990) Phys. Lett. B, 237, pp. 436-439
dc.descriptionBaylis, W.E., (1996) Clifford (Geometric) Algebras with Applications in Physics, Mathematics and Engineering, , Birkhäuser, Boston
dc.descriptionBaylis, W., (1999) Electrodynamics, A Modern Geometric Approach, , Birkhauser, Boston
dc.descriptionBjorken, J.D., Drell, S., (1964) Relativistic Quantum Mechanics, , McGraw-Hill, New York
dc.descriptionBeen, I.M., Tucker, R.W., An Introduction to Spinors and Geometries with Applications in Physics, , Hilger, Bristol
dc.descriptionBeen, I.M., Tucker, R.W., Representing spinors with differential forms, in (1988) Spinors in Physics and Geometry, , edited by A. Trautman and G. Furlan (World Scientific, Singapore)
dc.descriptionBerezin, F.A., (1996) The Method of Second Quantization, , Academic, New York
dc.descriptionBerezin, F.A., Marinov, M.S., Particle spin dynamics as the Grassmann variant of classical mechanics (1997) Ann. Phys. (N.Y.), 104, pp. 336-362
dc.descriptionBayro-Corrochano, E., Zhang, Y.A., The motor extended Kalman filter: A geometrical approach for 3D rigid motion estimation (2000) J. Math. Imaging Vision, 13, pp. 205-227
dc.descriptionBayro-Corrochano, E., (2001) Geometrical Computing for Perception Action Systems, , Springer, Berlin
dc.descriptionBlaine Lawson Jr., H., Michelshon, M.L., (1989) Spin Geometry, , Princeton University Press, Princeton, NJ
dc.descriptionBleecker, D., (1981) Gauge Theory and Variational Principles, , Addison-Wesley Reading, MA
dc.descriptionBrauer, R., Weyl, H., Spinors in n dimensions (1935) Am. J. Math., 57, pp. 425-449
dc.descriptionBudinich, P., Trautman, A., (1998) The Spinorial Chessboard, , Springer, Berlin
dc.descriptionCartan, E., (1996) The Theory of Spinors, , MIT Press, Cambridge, MA
dc.descriptionCastro, C., Hints of a new relativity principle from p-brane quantum mechanics (2000) Chaos, Solitons Fractals, 11, pp. 1721-1737
dc.descriptionCastro, C., The status and programs of the new relativity theory (2001) Chaos, Solitons Fractals, 12, pp. 1585-1606
dc.descriptionCastro, C., The string uncertainty relations follow from the new relativity principle (2000) Found. Phys., 30, pp. 1301-1316
dc.descriptionCastro, C., Is quantum spacetime infinite dimensional (2000) Chaos, Solitons Fractals, 11, pp. 1663-1670
dc.descriptionCastro, C., Noncommutative Quantum Mechanics and Geometry from Quantization in C-spaces, , hep-th/0206181
dc.descriptionCastro, C., A derivation of the black-hole area-entropy relation in any dimension (2001) Entropie, 3, pp. 12-26
dc.descriptionCastro, C., Granik, A., Extended scale relativity, p-loop harmonic oscillator and logarithmic corrections to the black hole entropy (2003) Found. Phys., 33, pp. 445-466
dc.descriptionCastro, C., Pavsic, M., Higher derivative gravity and torsion from the geometry of C-spaces (2002) Phys. Lett. B, 539, pp. 133-142
dc.descriptionCastro, C., Generalized p-forms electrodynamics in Clifford space (2004) Mod. Phys. Lett. A, 19, pp. 19-29
dc.descriptionCastro, C., Pavsic, M., The extended relativity theory in Clifford spaces Int. J. Mod. Phys., , to be published
dc.descriptionChallinor, A., Lasenby, A., Doran, C., Gull, S., Massive, non-ghost solutions for the Dirac field coupled self-consistently to gravity (1997) Gen. Relativ. Gravit., 29, pp. 1527-1544
dc.descriptionChallinor, A., Lasenby, A., Somaroo, C., Doran, C., Gull, S., Tunnelling times of electrons (1997) Phys. Lett. A, 227, pp. 143-152
dc.descriptionChallinor, A., Lasenby, A., Doran, C., A relativistic, causal account of spin measurement (1996) Phys. Lett. A, 218, pp. 128-138
dc.descriptionChevalley, C., (1954) The Algebraic Theory of Spinors, , Columbia University Press, New York
dc.descriptionChevalley, C., (1997) The Algebraic Theory of Spinors and Clifford Algebras. Collect Works Vol. 2, 2. , Springer-Verlag, Berlin
dc.descriptionChoquet-Bruhat, Y., (1968) Géométrie Différentielle et Systèmes Extérieurs, , Dunod, Paris
dc.descriptionChoquet-Bruhat, Y., Dewitt-Morette, C., Dillard-Bleick, M., (1982) Analysis, Manifolds and Physics, Revised Edition, , North-Holland, Amsterdam
dc.descriptionColombo, F., Sabadini, I., Sommen, F., Struppa, D.C., Computational Algebraic Analysis (2004) Progress in Mathematical Physics, , Birkhauser, Boston
dc.descriptionCrawford, J., On the algebra of Dirac bispinor densities: Factorization and inversion theorems (1985) J. Math. Phys., 26, pp. 1439-2144
dc.descriptionCrummeyrolle, A., (1991) Orthogonal and Sympletic Clifford Algebras, , Kluwer Academic, Dordrecht
dc.descriptionDaviau, C., (1993) Equation de Dirac non Linéaire, , Thèse de doctorat, Univ. de Nantes
dc.descriptionDaviau, C., Solutions of the Dirac equation and a non linear Dirac equation for the hydrogen atom (1997) Adv. Appl. Clifford Algebras, 7, pp. 175-194
dc.descriptionDelanghe, R., Sommen, F., Souček, V., Clifford algebra and spinor-valued functions: A function theory for the dirac operator (1992) Mathematics and Its Applications, 53. , Kluwer Academic, Dordrecht
dc.descriptionDe Leo, S., Rodrigues Jr., W.A., Quantum mechanics: From complex to complexified quaternions (1997) Int. J. Theor. Phys., 36, pp. 2725-2757
dc.descriptionDe Leo, S., Rodrigues Jr., W.A., Quaternionic electron theory: Dirac's equation (1998) Int. J. Theor. Phys., 37, pp. 1511-1529
dc.descriptionDe Leo, S., Rodrigues Jr., W.A., Quaternionic electron theory: Geometry, algebra and Dirac's spinors (1998) Int. J. Theor. Phys., 37, pp. 1707-1720
dc.descriptionDe Leo, S., Rodrigues Jr., W.A., Vaz Jr., J., Complex geometry and Dirac equation (1998) Int. J. Theor. Phys., 37, pp. 2415-2431
dc.descriptionDe Leo, S., Rodrigues Jr., W.A., Vaz Jr., J., Dirac-hestenes lagrangian (1999) Int. J. Theor. Phys., 38, pp. 2349-2369
dc.descriptionDirac, P.A.M., The quantum theory of the electron (1928) Proc. R. Soc. London, Ser. A, 117, pp. 610-624
dc.descriptionDoran, C.J.L., Lasenby, A., Challinor, A., Gull, S., Effects of spin-torsion in gauge theory gravity (1998) J. Math. Phys., 39, pp. 3303-3321
dc.descriptionDoran, C.J.L., Lasenby, A., Gull, S., The physics of rotating cylindrical strings (1996) Phys. Rev. D, 54, pp. 6021-6031
dc.descriptionDoran, C.J.L., Lasenby, A., Somaroo, S., Challinor, A., Spacetime algebra and electron physics (1996) Adv. Imaging Electron Phys., 95, pp. 271-386
dc.descriptionDoran, C.J.L., New form of the Kerr solution (2000) Phys. Rev. D, 61, p. 067503
dc.descriptionDoran, C., Lasenby, A., (2003) Geometric Algebra for Physicists, , Cambridge University Press, Cambridge
dc.descriptionDorst, L., Doran, C., Lasenby, J., (2002) Applications of Geometric Algebra in Computer Science and Engineering, , Birkhauser, Boston
dc.descriptionFauser, B., A Treatise on Quantum Clifford Algebras, , math.QA/022059
dc.descriptionFelzenwalb, B., (1979) Álgebras de Dimensão Finita, , Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro
dc.descriptionFernández, V.V., Moya, A.M., Rodrigues Jr., W.A., Covariant derivatives on minkowski manifolds (2000) Clifford Algebras and Their Applications in Mathematical Physics, Vol. 1: Algebra and Physics, 1. , edited by R. Ablamowicz and B. Fauser (Birkhauser, Boston)
dc.descriptionFernández, V.V., Moya, A.M., Rodrigues Jr., W.A., Euclidean clifford algebra space (2001) Adv. Appl. Clifford Algebras, 11, pp. 1-21
dc.descriptionFernández, V.V., Moya, A.M., Rodrigues Jr., W.A., Extensors (2001) Adv. Appl. Clifford Algebras, 11, pp. 23-43
dc.descriptionFernández, V.V., Moya, A.M., Rodrigues Jr., W.A., Metric tensor vs metric extensor (2001) Adv. Appl. Clifford Algebras, 11, pp. 43-51
dc.descriptionFierz, M., Zur FermischenTheorie des β-zerfals (1937) Z. Phys., 104, pp. 553-565
dc.descriptionFigueiredo, V.L., Rodrigues Jr., W.A., Oliveira, E.C., Covariant, algebraic and operator spinors (1990) Int. J. Theor. Phys., 29, pp. 371-395
dc.descriptionFigueiredo, V.L., Rodrigues Jr., W.A., Oliveira, E.C., Clifford algebras and the hidden geometrical nature of spinors (1990) Algebras, Groups Geom., 7, pp. 153-198
dc.descriptionFrankel, T., (1997) The Geometry of Physics, , Cambridge University Press, Cambridge
dc.descriptionFuruta, S., Doran, C.J.L., Havel, S.-G., Measurement with SAW-guided electrons (2002) Proceedings, Sixth International Conference on Clifford Algebras and Their Applications, , Tennessee
dc.descriptionGsponer, A., On the 'equivalence' of maxwell and dirac equations (2002) Int. J. Theor. Phys., 41, pp. 689-694
dc.descriptionGeroch, R., Spinor structure of spacetimes in general relativity. I (1968) J. Math. Phys., 9, pp. 1739-1744
dc.descriptionGraf, W., Differential forms as spinors (1978) Ann. Inst. Henri Poincare, Sect. A, 29, pp. 85-109
dc.descriptionGull, S.F., Lasenby, A.N., Doran, C.J.L., Electron paths tunnelling and diffraction in the spacetime algebra (1993) Found. Phys., 23, pp. 1329-1356
dc.descriptionGurtler, R., Hestenes, D., Consistency in the formulation of Dirac, Pauli and Schrodinger theories (1975) J. Math. Phys., 16, pp. 573-583
dc.descriptionHarvey, F.R., (1990) Spinors and Calibrations, , Academic, San Diego
dc.descriptionHavel, T.F., Doran, C.J.L., Furuta, S., Density operators in the multiparticle spacetime algebra Proc. R. Soc., , to be published
dc.descriptionHermann, R., Spinors, Clifford and Caley algebras (1974) Interdisciplinariy Mathematics, 7. , Rutgers University, New Brunswick, NJ
dc.descriptionHestenes, D (1966) Space-time Algebra, , Gordon and Breach, New York, 1987
dc.descriptionHestenes, D., Real spinor fields (1967) J. Math. Phys., 8, pp. 798-808
dc.descriptionHestenes, D., Observables, operators, and complex numbers in Dirac theory (1975) J. Math. Phys., 16, pp. 556-571
dc.descriptionHestenes, D., Local observables in Dirac theory (1973) J. Math. Phys., 14, pp. 893-905
dc.descriptionHestenes, D., Proper particle mechanics (1974) J. Math. Phys., 15, pp. 1768-1777
dc.descriptionHestenes, D., Proper dynamics of a rigid point particle (1974) J. Math. Phys., 15, pp. 1778-1786
dc.descriptionHestenes, D., Observables operators and complex numbers in the Dirac theory (1975) J. Math. Phys., 16, pp. 556-572
dc.descriptionHestenes, D., Sobczyk, G., (1984) Clifford Algebra to Geometrical Calculus, , Reidel, Dordrecht
dc.descriptionHestenes, D., Space-time structure of weak and electromagnetic interactions (1982) Found. Phys., 12, pp. 153-168
dc.descriptionHestenes, D., Quantum mechanics from self-interaction (1985) Found. Phys., 15, pp. 63-87
dc.descriptionHestenes, D., The Zitterbewegung interpretation of quantum mechanics (1990) Found. Phys., 20, pp. 1213-1232
dc.descriptionHestenes, D., A spinor approach to gravitational motion and precession (1986) Int. J. Theor. Phys., 25, pp. 1013-1028
dc.descriptionHestenes, D., Invariant body kinematics I: Saccadic and compensatory eye movements (1993) Neural Networks, 7, pp. 65-77
dc.descriptionHestenes, D., Invariant body kinematics II: Reaching and neurogeometry (1993) Neural Networks, 7, pp. 79-88
dc.descriptionHladik, J., (1999) Spinors in Physics, , Springer-Verlag, Berlin
dc.descriptionHurley, D.J., Vandyck, M.A., (1999) Geometry, Spinors and Applications, , Springer-Verlag, Berlin
dc.descriptionIvanenko, D., Obukov, N.Yu., Gravitational interaction of fermion antisymmetric connection in general relativitiy (1985) Ann. Phys. (N.Y.), 17, pp. 59-70
dc.descriptionJancewicz, B., (1989) Multivectors and Clifford Algebra in Electrodynamics, , World Scientific, Singapore
dc.descriptionKähler, E., Der innere differentialkalkül (1962) Rediconti Matematica Appl, 21, pp. 425-523
dc.descriptionKnus, M.A., Quadratic forms (1988) Clifford Algebras and Spinors, , Univ. Estadual de Campinas (UNICAMP), Campinas
dc.descriptionLasenby, J., Bayro-Corrochano, E.J., Lasenby, A., Sommer, G., A new methodology for computing invariants in computer vison (1996) IEEE Proc. of the International Conf. on Pattern Recognition, ICPR' 96, 1, pp. 93-397. , Viena, Austria
dc.descriptionLasenby, J., Bayro-Corrochano, E.J., Computing 3D projective invariants from points and lines (1997) 7th Int. Conf., CAIP' 97, pp. 82-89. , Computer Analysis of Images and Patterns, edited by G. Sommer, K. Daniilisis, and X. Pauli, Kiel (Springer-Verlag, Berlin)
dc.descriptionLasenby, J., Bayro-Corrochano, E.J., Analysis and computation of projective invariants from multiple views in the geometrical algebra framework (1999) Int. J. Pattern Recognit. Artif. Intell., 13, pp. 1105-1121
dc.descriptionLasenby, A., Doran, C., Grassmann calculus, pseudoclassical mechanics and geometric algebra (1993) J. Math. Phys., 34, pp. 3683-3712
dc.descriptionLasenby, A., Doran, C., Gull, S., Gravity, gauge theories and geometric algebra (1998) Philos. Trans. R. Soc. London, Ser. A, 356, pp. 487-582
dc.descriptionLasenby, J., Lasenby, A.N., Doran, C.J.L., A unified mathematical language for physics and engineering in the 21st century (2000) Philos. Trans. R. Soc. London, Ser. A, 358, pp. 21-39
dc.descriptionLasenby, A., Doran, C.J.L., Geometric algebra, Dirac wavefunctions and black holes (2002) Advances in the Interplay between Quantum and Gravity Physics, pp. 251-283. , edited by P. G. Borgmann and V. de Sabbata (Kluwer Academic, Dordrecht)
dc.descriptionLichnerowicz, A., Champs spinoriales et propagateurs en relativité générale (1964) Ann. Inst. Henri Poincare, Sect. A, 13, pp. 233-320
dc.descriptionLewis, A., Doran, C., Lasenby, A., Electron scattering without spin sums (2001) Int. J. Theor. Phys., 40, pp. 363-375
dc.descriptionLichnerowicz, A., Champ de Dirac, Champ du neutrino et transformations C, P, T sur un espace temps courbe (1984) Bull. Soc. Math. France, 92, pp. 11-100
dc.descriptionLounesto, P., (2001) Clifford Algebras and Spinors, 2nd Ed., , Cambridge University Press, Cambridge
dc.descriptionMarchuck, N., A Concept of Dirac-type Tensor Equations, , math-ph/0212006
dc.descriptionMarchuck, N., Dirac-type tensor equations with non Abelian gauge symmetries on pseudo-Riemannian space (2002) Nuovo Cimento Soc. Ital. Fis., B, 117 B, pp. 613-614
dc.descriptionMarchuck, N., The Dirac equation vs. the Dirac type tensor equation (2002) Nuovo Cimento Soc. Ital. Fis., B, 117 B, pp. 511-520
dc.descriptionMarchuck, N., Dirac-type Equations on A Parallelisable Manifolds, , math-ph/0211072
dc.descriptionMarchuck, N., Dirac-type tensor equations with non-Abelian gauge symmetries on pseudo-Riemannian space (2002) Nuovo Cimento Soc. Ital. Fis., B, 117 B, pp. 95-120
dc.descriptionMarchuck, N., The Tensor Dirac Equation in Riemannian Space, , math-ph/0010045
dc.descriptionMarchuck, N., A Tensor Form of the Dirac Equation, , math-ph/0007025
dc.descriptionMarchuck, N., A gauge model with spinor group for a description of a local interaction of a Fermion with electromagnetic and gravitational fields (2000) Nuovo Cimento Soc. Ital. Fis., B, 115 B, pp. 11-25
dc.descriptionMarchuck, N., Dirac Gamma-equation, Classical Gauge Fields and Clifford Algebra, , math-ph/9811022
dc.descriptionMatteuci, P., (2003) Gravity, Spinors and Gauge Natural Bundles,", , http://www.maths.soton.ac.uk/~pnm/phdthesis.pdf, Ph.D. thesis, Univ. Southampton
dc.descriptionMiller Jr., W., (1972) Symmetry Groups and Their Applications, , Academic, New York
dc.descriptionMiralles, D.E., (2001) Noves Applications de l'Algebra Geomètrica a la Física Matemàtica, , Ph.D. thesis, Department de Física Fonamental, Universitat de Barcelona
dc.descriptionMisner, C.W., Wheeler, J.A., Classical physics as geometry-gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space (1957) Ann. Phys. (N.Y.), 2, pp. 525-603
dc.descriptionMosna, R.A., Miralles, D., Vaz Jr., J., Multivector Dirac equations and Z2-gradings Clifford algebras (2002) Int. J. Theor. Phys., 41, pp. 1651-1671
dc.descriptionMosna, R.A., Miralles, D., Vaz Jr., J., Z2-gradings on Clifford algebras and multivector structures (2003) J. Phys. A, 36, pp. 4395-4405
dc.descriptionMosna, R.A., Vaz Jr., J., Quantum tomography for Dirac spinors (2003) Phys. Lett. A, 315, pp. 418-425
dc.descriptionMosna, R.A., Rodrigues Jr., W.A., The bundles of algebraic and Dirac-Hestenes spinor fields J. Math. Phys., , in press
dc.descriptionMoya, A.M., Fernández, V.V., Rodrigues Jr., W.A., Metric Clifford algebra (2001) Adv. Appl. Clifford Algebras, 11, pp. 53-73
dc.descriptionMoya, A.M., Fernández, V.V., Rodrigues Jr., W.A., Multivector functions of a real variable (2001) Adv. Appl. Clifford Algebras, 11, pp. 75-83
dc.descriptionMoya, A.M., Fernández, V.V., Rodrigues Jr., W.A., Multivector functions of mutivector variable (2001) Adv. Appl. Clifford Algebras, 11, pp. 85-98
dc.descriptionMoya, A.M., Fernández, V.V., Rodrigues Jr., W.A., Multivector functional (2001) Adv. Appl. Clifford Algebras, 11, pp. 99-109
dc.descriptionNaber, G.L., Topology (2000) Appl. Math. Sci., 141. , Geometry and Gauge Fields. Interactions, (Springer-Verlag, New York)
dc.descriptionNakahara, M., Geometry (1990) Topology and Physics, , Institute of Physics, Bristol
dc.descriptionNicolescu, L.I., Notes on Seiberg-Witten Theory (2000) Graduate Studies in Mathematics, 28. , AMS, Providence, RI
dc.descriptionOliveira, E.C., Rodrigues Jr., W.A., Clifford Valued Differential Forms, Algebraic Spinor Fields, Gravitation, Electromagnetism and "Unified" Theories,", , math-ph/0311001
dc.descriptionPavšic, M., Recami, E., Rodrigues Jr., W.A., Macarrone, G.D., Racciti, F., Salesi, G., Spin and electron structure (1993) Phys. Lett. B, 318, pp. 481-488
dc.descriptionPav̌sic, M., The landscape of theoretical physics: A global view-from point particles to the brane world and beyond in search of a unifying principle (2001) Fundamental Theories of Physics, 119. , Kluwer Academic, Dordrecht
dc.descriptionPav̌sic, M., Clifford algebra based polydimensional relativity and relativistic dynamics (2001) Found. Phys., 31, pp. 1185-1209
dc.descriptionPav̌sic, M., How the geometric calculus resolves the ordering ambiguity of quantum theory in curved space (2003) Class. Quantum Grav., 20, pp. 2697-2714
dc.descriptionPenrose, R., Rindler, W (1986) Spinors and Spacetitne, 1. , Cambridge University Press, Cambridge
dc.descriptionPezzaglia Jr., W.M., Dimensionality democratic calculus and principles of polydimensional physics (2000) Clifford Algebras and Their Applications in Mathematical Physics, Vol 1: Algebras and Physics, 1. , edited by R. Ablamowicz and B. Fauser Birkhauser, Boston
dc.descriptionPorteous, I.R., (1981) Topological Geometry, 2nd Ed., , Cambridge University Press, Cambridge
dc.descriptionPorteous, I.R., (2001) Clifford Algebras and the Classical Groups, 2nd Ed., , Cambridge University Press, Cambridge
dc.descriptionRainich, G.Y., Electromagnetism in general relativity (1925) Trans. Am. Math. Soc., 27, pp. 106-136
dc.descriptionRaševskil, P.K., The theory of spinors (1955) Usp. Mat. Nauk, 10, pp. 3-110
dc.descriptionRyan, J., Sproessig, W., (2000) Clifford Algebras and Their Applications in Mathematical Physics, Vol 2: Clifford Analysis, 2. , Birkhauser, Boston
dc.descriptionRiesz, M., Clifford numbers and spinors (1993) Lecture Series, 28. , The Institute for Fluid Mechanics and Applied Mathematics, Univ. Maryland, 1958. Reprinted as facsimile, E. F. Bolinder, and P. Lounesto (eds.) (Kluwer Academic, Dordrecht)
dc.descriptionRiesz, M., L' equation de Dirac en relativité générale (1954) Skandinaviska Matematikerkongressen I Lund 1953, pp. 241-259. , Håkan Ohlssons Boktryckeri, Lund
dc.description(1988) Marcel Riez, Collected Papers, pp. 814-832. , L. Gårdening and L. Hömander (eds.), (Springer, New York)
dc.descriptionRodrigues Jr., W.A., Oliveira, E.C., Dirac and Maxwell equations in the Clifford and spin-Clifford bundles (1990) Int. J. Theor. Phys., 29, pp. 397-411
dc.descriptionRodrigues Jr., W.A., Vaz Jr., J., About Zitterbewegung and electron structure (1993) Phys. Lett. B, 318, pp. 623-628
dc.descriptionRodrigues Jr., W.A., Souza, Q.A.G., Vaz Jr., J., Lounesto, P., Dirac-Hestenes spinor fields on Riemann-Cartan manifolds (1995) Int. J. Theor. Phys., 35, pp. 1854-1900
dc.descriptionRodrigues Jr., W.A., Souza, Q.A.G., Vaz, J., Spinor fields and superfields as equivalence classes of exterior algebra fields (1995) Clifford Algebras and Spinor Structures, pp. 177-198. , edited by R. Abramovicz and P. Lounesto (Kluwer Academic Dordrecht)
dc.descriptionRodrigues Jr., W.A., Vaz Jr., J., Pavšic, M., The Clifford bundle and the dynamics of the superparticle (1996) Banach Cent Publ., 37, pp. 295-314
dc.descriptionRodrigues Jr., W.A., Vaz Jr., J., From electromagnetism to relativistic quantum mechanics (1998) Found. Phys., 28, pp. 789-814
dc.descriptionRodrigues Jr., W.A., Souza, Q.A.G., The Clifford bundle and the nature of the gravitational field (1993) Found. Phys., 23, pp. 1465-1490
dc.descriptionRodrigues Jr., W.A., Maxwell-Dirac equivalences of the first and second kinds and the Seiberg-Witten equations (2003) Int. J. Math. Math. Sci., 2003, pp. 2707-2734
dc.descriptionRodrigues Jr., W.A., Sharif, M., Rotating frames in SRT: The Sagnac effect and related issues (2001) Found. Phys., 31, pp. 1785-11783
dc.descriptionRodrigues Jr., W.A., Sharif, M., Equivalence principle and the principle of local Lorentz invariance (2001) Found. Phys., 31, pp. 1785-2186
dc.descriptionSachs, R.K., Wu, H., (1997) General Relativity for Mathematicians, , Springer-Verlag, New York
dc.descriptionSeiberg, N., Witten, E., Monopoles, duality and chiral symmetry breaking in N=2 QCD (1994) Nucl. Phys. B, 431, pp. 581-640
dc.descriptionSomaroo, S.S., Lasenby, A., Doran, C., Geometric algebra and the causal approach to multiparticle quantum mechanics (1999) J. Math. Phys., 40, pp. 3327-3340
dc.descriptionSommer, G., (2000) Geometric Computing with Clifford Algebra, , Springer-Verlag, Heidelberg
dc.descriptionStreater, R.F., Wightman, A.S., (1964) PCT, Spin & Statistics, and All That, , Benjamin, New York
dc.descriptionTrayling, G., Baylis, W., A geometric basis for the standard-model gauge group (2001) J. Phys. A, 34, pp. 3309-3324
dc.descriptionVaz Jr., J., Rodrigues Jr., W.A., Equivalence of Dirac and Maxwell equations and quantum mechanics (1993) Int. J. Theor. Phys., 32, pp. 945-949
dc.descriptionVaz Jr., J., Rodrigues Jr., W.A., Zitterbewegung and the electromagnetic field of the electron (1993) Phys. Lett. B, 319, pp. 203-208
dc.descriptionVaz Jr., J., The Barut and Zanghi model, and some generalizations (1995) Phys. Lett. B, 344, pp. 149-164
dc.descriptionVaz Jr., J., A spinning particle model including radiation reaction (1995) Phys. Lett. B, 345, pp. 448-451
dc.descriptionVaz Jr., J., Clifford algebras and Witten monoples equations (1997) Geometry, Topology and Physics, , edited by B. N. Apanasov, S. B. Bradlow, W. A. Rodrigues, Jr., and K. K. Uhlenbeck (Walter de Gruyter, Berlin)
dc.descriptionWitten, E., A note on the antibracket formalism (1990) Mod. Phys. Lett. A, 5, pp. 487-494
dc.descriptionZeni, J.R., Rodrigues Jr., W.A., A thoughtful study of Lorentz transformations by Clifford algebras (1992) Int. J. Mod. Phys. A, 7, pp. 1793-1817
dc.languageen
dc.publisher
dc.relationJournal of Mathematical Physics
dc.rightsaberto
dc.sourceScopus
dc.titleAlgebraic And Dirac-hestenes Spinors And Spinor Fields
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución