dc.creatorRibeiro K.O.
dc.creatorRodrigues M.I.
dc.creatorSabadini E.
dc.creatorCunha R.L.
dc.date2004
dc.date2015-06-26T14:25:09Z
dc.date2015-11-26T14:14:43Z
dc.date2015-06-26T14:25:09Z
dc.date2015-11-26T14:14:43Z
dc.date.accessioned2018-03-28T21:15:35Z
dc.date.available2018-03-28T21:15:35Z
dc.identifier
dc.identifierFood Hydrocolloids. , v. 18, n. 1, p. 71 - 79, 2004.
dc.identifier0268005X
dc.identifier10.1016/S0268-005X(03)00043-2
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0345307605&partnerID=40&md5=fced1445e037bf75774f5d50f8032c8a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/94679
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/94679
dc.identifier2-s2.0-0345307605
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1242605
dc.descriptionThe effects of casein, κ-carrageenan and sugars (sucrose or sucralose) concentrations on the mechanical properties of gels acidified by glucono-δ-lactone (GDL) were investigated. Three experimental designs were employed to determine the formulations, and the results were analyzed using response surface regression and analysis of variance. Casein/carragenan gels were stronger than single compound gels, probably because of the strong synergism between the polymers, especially at low casein concentrations. Increased casein concentrations resulted in softer and more brittle gels, which can be explained by the excluded-volume effects. The presence of sucrose shifted this thermodynamic incompatibility indicating that higher protein concentrations were required. Moreover, gels containing sucrose showed the highest stress at rupture values and had lower influence of polymer concentrations. Conversely, gels containing sucralose showed the lowest values of stress at rupture, indicating that this co-solute, even in small proportions, decreased the polysaccharide contribution to the formation of a gel network. © 2003 Elsevier Ltd. All rights reserved.
dc.description18
dc.description1
dc.description71
dc.description79
dc.descriptionBenedito, J., Gonzalez, R., Rossello, C., Mulet, A., Instrumental and expert assessment of Mahon cheese texture (2000) Journal of Food Science, 65 (7), pp. 1170-1174
dc.descriptionBreuil, P., Meullenet, J.F., A comparison of three instrumental tests for predicting sensory texture profiles of cheese (2001) Journal of Texture Studies, 32 (1), pp. 41-55
dc.descriptionChen, J., Dickinson, E., On the temperature reversibility of the viscoelasticity of acid-induced sodium caseinate emulsion gels (2000) International Dairy Journal, 10 (8), pp. 541-549
dc.descriptionChu, B., Zhou, Z., Wu, G.W., Farrell, H.M., Laser-light scattering of model casein solutions-effects of high-temperature (1995) Journal of Colloid and Interface Science, 170 (1), pp. 102-112
dc.descriptionDalgleish, D.G., Law, A.J.R., pH-Induced dissociation of bovine casein micelles. I. Analysis of liberated caseins (1988) Journal of Dairy Research, 55 (4), pp. 529-538
dc.descriptionDickinson, E., Merino, L.M., Effect of sugars on the rheological properties of acid caseinate-stabilized emulsion gels (2002) Food Hydrocolloids, 16 (4), pp. 321-331
dc.descriptionFarrell, H.M., Pessen, H., Brown, E.M., Kumosinski, T.F., Structural insights into the bovine casein micelle-small-angle X-ray-scattering studies and correlations with spectroscopy (1990) Journal of Dairy Science, 73 (12), pp. 3592-3601
dc.descriptionFiszman, S.M., Duran, L., Mechanical properties of kappa carrageenan-locust bean gum mixed gels with added sucrose (1989) Food Hydrocolloids, 3 (3), pp. 209-216
dc.descriptionGrinberg, V.Y., Tolstoguzov, V.B., Thermodynamic incompatibility of proteins and polysaccharides in solution (1997) Food Hydrocolloids, 11 (2), pp. 145-158
dc.descriptionKulmyrzaev, A., Bryant, C., McClements, D.J., Influence of sucrose on the thermal denaturation, gelation, and emulsion stabilization of whey proteins (2000) Journal of Agricultural and Food Chemistry, 48 (5), pp. 1593-1597
dc.descriptionLucey, J.A., Tamehana, M., Singh, H., Munro, P.A., A comparison of the formation, rheological properties and microstructure of acid skim milk gels made with a bacterial culture or glucono-δ-lactone (1998) Food Research International, 31 (2), pp. 147-155
dc.descriptionLucey, J.A., Van Vliet, T., Grolle, K., Geurts, T., Walstra, P., Properties of acid casein gels made by acidification with glucono-δ-lactone. 1. Rheological properties (1997) International Dairy Journal, 7 (6-7), pp. 381-388
dc.descriptionMiller, A.M., Sucralose (1991) Alternative Sweeteners, , L. Brien, & C. Gelardi (Eds.). New York: Dekker
dc.descriptionModler, H.W., Kalab, M., Microstructure of yogurt stabilized with milk-proteins (1983) Journal of Dairy Science, 66 (3), pp. 430-437
dc.descriptionMora-Gutierrez, A., Farrell, H.M., Sugar-casein interaction in deuterated solutions of bovine and caprine casein as determined by oxygen-17 and carbon-13 nuclear magnetic resonance: A case of preferential interactions (2000) Journal of Agricultural and Food Chemistry, 48 (8), pp. 3245-3255
dc.descriptionNakamura, K., Shinoda, E., Tokita, M., The influence of compression velocity on strength and structure for gellan gels (2001) Food Hydrocolloids, 15 (3), pp. 247-252
dc.descriptionNishinari, K., Watase, M., Williams, P.A., Phillips, G.O., K-Carrageenan gels: Effect of sucrose, glucose, urea and guanidine hydrochloride on the rheological and thermal properties (1990) Journal of Agricultural and Food Chemistry, 38 (5), pp. 1188-1193
dc.descriptionOakenfull, D., Miyoshi, E., Nishinari, K., Scott, A., Rheological and thermal properties of milk gels formed with kappa-carrageenan. I. Sodium caseinate (1999) Food Hydrocolloids, 13 (6), pp. 525-533
dc.descriptionPhillips, L.G., Whitehead, D.M., Kinsella, J., (1994) Structure-Function Properties of Food Proteins, , London: Academic Press
dc.descriptionRamakrishnan, S., Prud'homme, R.K., Effect of solvent quality and ions on the rheology and gelation of kappa-carrageenan (2000) Journal of Rheology, 44 (4), pp. 885-896
dc.descriptionRoefs, S.P.F.M., Degrootmostert, A.E.A., Van Vliet, T., Structure of acid casein gels. 1. Formation and model of gel network (1990) Colloids and Surfaces A, 50, pp. 141-159
dc.descriptionSanderson, G.R., Bell, V.L., Clark, R.C., Ortega, D., The texture of gellan gum gels (1988) Gums and Stabilisers for the Food Industry, 4, pp. 219-229. , G. O. Philips, D. J. Wedlock, & P. A. Williams (Eds.), (Oxford: IRL Press), Oxford: IRL Press
dc.descriptionSchkoda, P., Hechler, A., Kessler, H.G., Effect of minerals and pH on rheological properties and syneresis of milk-based acid gels (1999) International Dairy Journal, 9 (3-6), pp. 269-273
dc.descriptionSchorsch, C., Jones, M.G., Norton, I.T., Thermodynamic incompatibility and microstructure of milk protein/locust bean gum/sucrose systems (1999) Food Hydrocolloids, 13 (2), pp. 89-99
dc.descriptionSnoeren, T.H.M., Payens, T.A.J., Jeunink, J., Both, P., Electrostatic interaction between K-carrageenan and K-casein (1975) Milchwissenschaft, 30 (7), pp. 393-396
dc.descriptionTherkelsen, G.H., Carrageenan (1993) Industrial Gums: Polysaccharides and Their Derivates, pp. 145-180. , R. L. Whistler, & J. N. BeMiller (Eds.). California: Academic Press
dc.descriptionTolstoguzov, V., Some thermodynamic considerations in food formulation (2003) Food Hydrocolloids, 17 (1), pp. 1-23
dc.descriptionVan Vliet, T., Van Dijk, H.J.M., Zoon, P., Walstra, P., Relation between syneresis and rheological properties of particle gels (1991) Colloid and Polymer Science, 269 (6), pp. 620-627
dc.descriptionWium, H., Qvist, K.B., Rheological Properties of UF-Feta cheese determined by uniaxial compression and dynamic testing (1997) Journal of Texture Studies, 28 (4), pp. 435-454
dc.languageen
dc.publisher
dc.relationFood Hydrocolloids
dc.rightsfechado
dc.sourceScopus
dc.titleMechanical Properties Of Acid Sodium Caseinate-κ-carrageenan Gels: Effect Of Co-solute Addition
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución