dc.creatorDias R.C.E.
dc.creatorde Faria-Machado A.F.
dc.creatorMercadante A.Z.
dc.creatorBragagnolo N.
dc.creatorBenassi M.T.
dc.date2014
dc.date2015-06-25T17:52:09Z
dc.date2015-11-26T14:14:08Z
dc.date2015-06-25T17:52:09Z
dc.date2015-11-26T14:14:08Z
dc.date.accessioned2018-03-28T21:14:57Z
dc.date.available2018-03-28T21:14:57Z
dc.identifier
dc.identifierEuropean Food Research And Technology. Springer Verlag, v. 239, n. 6, p. 961 - 970, 2014.
dc.identifier14382377
dc.identifier10.1007/s00217-014-2293-x
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84911987191&partnerID=40&md5=a2b6f839afc55e33d638c26ad19b7ac4
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86226
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86226
dc.identifier2-s2.0-84911987191
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1242452
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThere is no consensus in the literature regarding the decrease of kahweol and cafestol contents during coffee roasting, but it has been reported that these compounds can undergo dehydration under heat. Kahweol and cafestol were quantified in Arabica and Robusta coffees with different roasting degrees (2, 4, 6, 8 and 10 min at 230 °C). The structures of the diterpenes and the presence of derivative compounds were determined by liquid chromatography with UV–Vis and mass spectrometry detection. In the dark roast samples, dehydro derivatives were found. The roasting process influenced the level of diterpenes in both species of coffee, but the effect was dependent on the intensity of the process. Cafestol and kahweol were degraded (general losses from 60 to 75 % on a lipid basis) to dehydrocafestol and dehydrokahweol, respectively, after 8 min of process, which corresponds to the commercial roasting degree. On the other hand, the amounts of cafestol and kahweol (mg/100 g of coffee) remained stable during the roasting process due to relative increase in lipid concentration.
dc.description239
dc.description6
dc.description961
dc.description970
dc.descriptionCAPES; São Paulo Research Foundation; CNPq; São Paulo Research Foundation; FAPESP; São Paulo Research Foundation
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCano-Marquina, A., Tarín, J.J., Cano, A., The impact of coffee on health (2013) Maturitas, 75, pp. 7-21. , COI: 1:CAS:528:DC%2BC3sXjslait7w%3D
dc.descriptionArruda, N.P., Rezende, C.C., Couri, S., Pereira, S.F., Silva, C.G., Perfil de voláteis, compostos fenólicos, atividade antioxidante e fator de proteção solar em óleo de café extraído por etanol (2009) In: 32 Reunião Anual da Sociedade Brasileira de Química
dc.descriptionBoekschoten, M.V., Engberink, M.F., Katan, M.B., Schouten, E.G., Reproducibility of the serum lipid response to coffee oil in healthy volunteers (2003) Nutr J, 2, pp. 1-8
dc.descriptionCavin, C., Holzhäuser, D., Scharf, G., Constable, A., Huber, W.W., Schilter, B., Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity (2002) Food Chem Toxicol, 40, pp. 1155-1163. , COI: 1:CAS:528:DC%2BD38XksVamtbw%3D
dc.descriptionNaidoo, N., Chen, C., Rebello, S.A., Speer, K., Tai, E.S., Lee, J., Buchmann, S., Rm, V.D., Cholesterol-raising diterpenes in types of coffee commonly consumed in Singapore, Indonesia and India and associations with blood lipids: cholesterol-raising diterpenes in types of coffee commonly consumed in Singapore. Nutr J (2011) doi: 10.1186/1475-2891-10-48
dc.descriptionLiu, Y., Kitts, D.D., Confirmation that the Maillard reaction is the principle contributor to the antioxidant capacity of coffee brews (2011) Food Res Int, 44, pp. 2418-2424. , COI: 1:CAS:528:DC%2BC3MXhtVCnsLfF
dc.descriptionKurzrock, T., Speer, K., Diterpenes and diterpene esters in coffee (2001) Food Rev Int, 17, pp. 433-450. , COI: 1:CAS:528:DC%2BD38Xmt1Gntg%3D%3D
dc.descriptionOliveira, L.S., Franca, A.S., Mendonça, J.C.F., Barros-Júnior, M.C., Proximate composition and fatty acids profile of green and roasted defective coffee beans (2006) LWT Food Sci Technol, 39, pp. 235-239. , COI: 1:CAS:528:DC%2BD2MXhtlWqu7jI
dc.descriptionToci, A.T., Neto, V.J.M.F., Torres, A.G., Farah, A., Changes in triacylglycerols and free fatty acids composition during storage of roasted coffee (2013) LWT Food Sci Technol, 50, pp. 581-590. , COI: 1:CAS:528:DC%2BC38XhsFCltbfL
dc.descriptionGloess, A.N., Schönbächler, B., Klopprogge, B., D’Ambrosio, L., Chatelain, K., Bongartz, A., Strittmatter, A., Yeretzian, C., Comparison of nine common coffee extraction methods: instrumental and sensory analysis (2013) Eur Food Res Technol
dc.descriptionUrgert, R., Van Der Weg, G., Kosmeijer-Schuil, T.G., Van De Bovenkamp, P., Hovenier, R., Katan, M.B., Levels of the cholesterol-elevating diterpenes cafestol and kahweol in various coffee brews (1995) J Agric Food Chem, 43, pp. 2167-2172. , COI: 1:CAS:528:DyaK2MXntFCisrY%3D
dc.descriptionCampanha, F.G., Dias, R.C.E., Benassi, M.T., Discrimination of coffee species using kahweol and cafestol effects of roasting and of defects (2010) Coffee Sci, 5, pp. 87-96
dc.descriptionDe Souza, R.M.N., Benassi, M.T., Discrimination of commercial roasted and ground coffees according to chemical composition (2012) J Braz Chem Soc, 23, pp. 1347-1354
dc.descriptionWermelinger, T., D’Ambrosio, L., Klopprogge, B., Yeretzian, C., Quantification of the Robusta fraction in a coffee blend via Raman spectroscopy: proof of principle (2011) J Agric Food Chem
dc.descriptionGrollier, J.F., Plessis, S., Use of coffee bean oil as a sun filter (1998) US Patent US4793990
dc.descriptionBertholet, R., Preparation of a mixture of cafestol and kahweol (1988) US Patent US4748258 A
dc.descriptionBaggenstoss, J., Poisson, L., Luethi, R., Perren, R., Escher, F., Influence of water quench cooling on degassing and aroma stability of roasted coffee (2007) J Agric Food Chem, 55, pp. 6685-6691. , COI: 1:CAS:528:DC%2BD2sXns1CksLY%3D
dc.descriptionFranca, A.S., Oliveira, L.S., Oliveira, R.C.S., Agresti, P.C.M., Augusti, R., A preliminary evaluation of the effect of processing temperature on coffee roasting degree assessment (2009) J Food Eng, 92, pp. 345-352. , COI: 1:CAS:528:DC%2BC3cXivVGrs78%3D
dc.descriptionBottazzi, D., Farina, S., Milani, M., Montorsi, L., A numerical approach for the analysis of the coffee roasting process (2012) J Food Eng, 112, pp. 243-252. , COI: 1:CAS:528:DC%2BC38Xntlylsro%3D
dc.descriptionOosterveld, A., Voragen, A.G.J., Schols, H.A., Effect of roasting on the carbohydrate composition of Coffea arabica beans (2003) Carbohydr Polym, 54, pp. 183-192. , COI: 1:CAS:528:DC%2BD3sXmvV2ks7o%3D
dc.descriptionRedgwell, R.J., Trovato, V., Curti, D., Fischer, M., Effect of roasting on degradation and structural features of polysaccharides in arabica coffee beans (2002) Carbohydr Res, 337, pp. 421-431. , COI: 1:CAS:528:DC%2BD38XhtlKqtLk%3D
dc.descriptionSpeer, K., Kölling-Speer, I., The lipid fraction of the coffee bean (2006) Braz J Plant Physiol, 18, pp. 201-216. , COI: 1:CAS:528:DC%2BD28XnsVWjsr4%3D
dc.descriptionLago, R.C.A., Lipídios em grãos (2001) Boletim do CEPA, 19, pp. 319-340
dc.descriptionHruschka, A., Speer, K., Amadò, R., Battaglia, R., Cafestal in coffee (1997) In: Amadò R, Battaglia R(eds), 3, pp. 655-658. , Proceedings of Euro Food Chem IX, Interlaken, Switzerland:
dc.descriptionSpeer, K., Hruschka, A., Kurzrock, T., Kölling-Speer, I., Parliament, T.H., Ho, C.-T., Schieberle, P., Diterpenes in coffee (2000) Caffeinated beverages, health benefits, physiological effects, and chemistry. ACS symposium series, 754, pp. 241-251
dc.descriptionDias, R.C.E., Faria, A.F., Mercadante, A.Z., Bragagnolo, N., Benassi, M.T., Comparison of extraction methods for kahweol and cafestol in roasted coffee (2013) J Braz Chem Soc, 24, pp. 492-499. , COI: 1:CAS:528:DC%2BC3sXotlyrtb8%3D
dc.descriptionDias, R.C.E., Campanha, F.G., Vieira, L.G.E., Pereira, L.P., Pot, D., Marraccini, P., Benassi, M.T., Evaluation of kahweol and cafestol in coffee tissues and roasted coffee by a new high-performance liquid chromatography methodology (2010) J Agric Food Chem, 58, pp. 88-93. , COI: 1:CAS:528:DC%2BD1MXhsVKmu73F
dc.descriptionRubayiza, A.B., Meurens, M., Chemical discrimination of arabica and robusta coffees by Fourier transform Raman spectroscopy (2005) J Agric Food Chem, 53, pp. 4654-4659. , COI: 1:CAS:528:DC%2BD2MXktF2rs70%3D
dc.descriptionKurzrock, T., Speer, K., Identification of kahweol fatty acid esters in arabica coffee by means of LC/MS (2001) J Sep Sci, 24, pp. 843-848. , COI: 1:CAS:528:DC%2BD3MXptleht7g%3D
dc.descriptionRoos, B., Van Der Weg, G., Urgert, R., Van De Bovenkamp, P., Charrier, A., Katan, M.B., Levels of cafestol, kahweol, and related diterpenoids in wild species of the coffee plant Coffea (1997) J Agric Food Chem, 45, pp. 3065-3069
dc.descriptionSpeer, K., Mischnick, P., 16-O-Methylcafestol-ein neues Diterpen im Kaffee Entdeckung und Identifizierung (1989) Eur Food Res Technol
dc.descriptionPettitt Junior, B.C., Identification of the diterpene esters in arabica and canephora coffees (1987) J Agric Food Chem, 35, pp. 549-551
dc.descriptionGuerrero, G., Suárez, M., Moreno, G., Chemosystematic study of diterpenoids in green coffee beans. In: International conference on coffee science (ASIC) (2005) pp 292–296
dc.descriptionKölling-Speer, I., Kurt, A., Nguyen, T., Speer, K., Cafestol and dehydrocafestol in roasted coffee. In: International colloquium on the chemistry of coffee (1997) pp 201–204
dc.languageen
dc.publisherSpringer Verlag
dc.relationEuropean Food Research and Technology
dc.rightsfechado
dc.sourceScopus
dc.titleRoasting Process Affects The Profile Of Diterpenes In Coffee
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución