dc.creator | Harlander J. | |
dc.creator | Kochloukova D.H. | |
dc.date | 2004 | |
dc.date | 2015-06-26T14:24:30Z | |
dc.date | 2015-11-26T14:13:39Z | |
dc.date | 2015-06-26T14:24:30Z | |
dc.date | 2015-11-26T14:13:39Z | |
dc.date.accessioned | 2018-03-28T21:14:27Z | |
dc.date.available | 2018-03-28T21:14:27Z | |
dc.identifier | | |
dc.identifier | Journal Of Algebra. , v. 273, n. 2, p. 435 - 454, 2004. | |
dc.identifier | 218693 | |
dc.identifier | 10.1016/S0021-8693(03)00267-9 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-1442307655&partnerID=40&md5=79b0b86b25fe06b9bc08051ca6ea9764 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/94489 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/94489 | |
dc.identifier | 2-s2.0-1442307655 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1242345 | |
dc.description | The Bieri-Neumann-Strebel invariant ∑m (G) of a group G is a certain subset of a sphere that contains information about finiteness properties of subgroups of G. In case of a metabelian group G the set ∑1 (G) completely characterizes finite presentability and it is conjectured that it also contains complete information about the higher finiteness properties (FPm-conjecture). The ∑m-conjecture states how the higher invariants are obtained from ∑1 (G). In this paper we prove the ∑2-conjecture. © 2004 Elsevier Inc. All rights reserved. | |
dc.description | 273 | |
dc.description | 2 | |
dc.description | 435 | |
dc.description | 454 | |
dc.description | Åberg, H., Bieri-Strebel valuations (of finite rank) (1986) Proc. London Math. Soc., 52 (3), pp. 269-304 | |
dc.description | Bestvina, M., Brady, N., Morse theory and finiteness properties of groups (1997) Invent. Math., 129 (3), pp. 445-470 | |
dc.description | Bieri, R., Groves, J.R.J., Metabelian groups of type FP∞ are virtually of type FP (1982) Proc. London Math. Soc., 45 (3), pp. 365-384 | |
dc.description | Bieri, R., Groves, J.R.J., The geometry of the set of characters induced by valuations (1984) J. Reine Angew. Math., 347, pp. 168-195 | |
dc.description | Bieri, R., Harlander, J., On the FP3-conjecture for metabelian groups (2001) J. London Math. Soc., 64 (2), pp. 595-610 | |
dc.description | Bieri, R., Harlander, J., A remark on the polyhedrality theorem for the ∑-invariants of modules over abelian groups (2001) Math. Proc. Cambridge Philos. Soc., 131, pp. 39-43 | |
dc.description | Bieri, R., Neumann, W.D., Strebel, R., A geometric invariant of discrete groups (1987) Invent. Math., 90, pp. 451-477 | |
dc.description | Bieri, R., Renz, B., Valuations on free resolutions and higher geometric invariants of groups (1988) Comment. Math. Helv., 63, pp. 464-497 | |
dc.description | Bieri, R., Strebel, R., Valuations and finitely presented metabelian groups (1980) Proc. London Math. Soc., 41 (3), pp. 439-464 | |
dc.description | Brown, K.S., Cohomology of Groups (1982) Grad. Texts in Math., 87. , Springer-Verlag, New York | |
dc.description | Bux, K.U., Finiteness properties of certain metabelian arithmetic groups in the function field case (1997) Proc. London Math. Soc., 75 (2), pp. 308-322 | |
dc.description | Groves, J.R.J., Some finitely presented nilpotent-by-abelian groups (1991) J. Algebra, 144, pp. 127-166 | |
dc.description | Gehrke, R., The higher geometric invariants for groups with sufficient commutativity (1998) Comm. Algebra, 26 (4), pp. 1097-1115 | |
dc.description | Kochloukova, D.H., The ∑m-conjecture for a class of metabelian groups (1999) London Math. Soc. Lecture Note Ser., 261, pp. 492-503. , Groups St Andrews '97 in Bath, Cambridge Univ. Press, Cambridge | |
dc.description | Kochloukova, D.H., The ∑2-conjecture for metabelian groups and some new conjectures: The split extension case (1999) J. Algebra, 222, pp. 357-375 | |
dc.description | Kochloukova, D.H., The FPm-conjecture for a class of metabelian groups (1996) J. Algebra, 184, pp. 1175-1204 | |
dc.description | Kochloukova, D.H., More about the geometric invariants ∑m (G) and ∑m (G, ℤ) for groups with normal locally polycyclic-by-finite subgroups (2001) Math. Proc. Cambridge Philos. Soc., 130 (2), pp. 295-306 | |
dc.description | Kochloukova, D.H., Subgroups of constructible nilpotent-by-abelian groups and a generalization of a result of Bieri-Newmann-Strebel (2002) J. Group Theory, 5, pp. 219-231 | |
dc.description | Meinert, H., Actions on 2-complexes and the homotopical invariant ∑2 of a group (1997) J. Pure Appl. Algebra, 119 (3), pp. 297-317 | |
dc.description | Meinert, H., The homological invariants for metabelian groups of finite Prüfer rank: A proof of the ∑m-conjecture (1996) Proc. London Math. Soc., 72 (2), pp. 385-424 | |
dc.description | Meier, J., Meinert, H., VanWyk, L., Higher generation subgroup sets and the ∑-invariants of graph groups (1998) Comment. Math. Helv., 73 (1), pp. 22-44 | |
dc.description | Noskov, G.A., The Bieri-Strebel invariant and homological finiteness conditions for metabelian groups (1997) Algebra I Logika, 36 (2), pp. 194-218 | |
dc.description | Renz, B., Geometrische Invarianten und Endlichkeitseigenschaften von Gruppen, Dissertation (1988), Universität Frankfurt a.M | |
dc.language | en | |
dc.publisher | | |
dc.relation | Journal of Algebra | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | The ∑2-conjecture For Metabelian Groups: The General Case | |
dc.type | Artículos de revistas | |