dc.creatorGoldenstein S.
dc.creatorVogler C.
dc.creatorMetaxas D.
dc.date2004
dc.date2015-06-26T14:24:27Z
dc.date2015-11-26T14:13:34Z
dc.date2015-06-26T14:24:27Z
dc.date2015-11-26T14:13:34Z
dc.date.accessioned2018-03-28T21:14:20Z
dc.date.available2018-03-28T21:14:20Z
dc.identifier
dc.identifierProceedings Of The Ieee Computer Society Conference On Computer Vision And Pattern Recognition. , v. 1, n. , p. I880 - I885, 2004.
dc.identifier10636919
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-5044222276&partnerID=40&md5=fbeaec17a38f1da8438b519e645cc554
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/94462
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/94462
dc.identifier2-s2.0-5044222276
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1242316
dc.descriptionIn this paper we perform 3D face tracking on corrupted video sequences. We use a deformable model, combined with a predictive filter, to recover both the rigid transformations and the values of the parameters that describe the evolution of the facial expressions over time. To be robust, predictive filters need a good observation of the system's state. We describe a new method to measure, at each moment in time, the correct distribution of an observation of the parameters of a high-dimensional deformable model. This method is based on bounding the confidence regions of the 2D image displacements with affine forms, and propagating them into parameter space. Using Lindeberg's theorem, we measure a good Gaussian approximation of the parameters in a manner that avoids many of the traditional assumptions about the observations' distributions. We demonstrate in experiments on sequences with compression artifacts, and poor-quality video sequences of Lauren Bacall and Humphrey Bogart from the 1950s, that, without any learning involved, our method is sufficiently robust to extract information from degraded image sequences. In addition, we provide ground truth validation.
dc.description1
dc.description
dc.descriptionI880
dc.descriptionI885
dc.descriptionBishop, G., Welch, G., An introduction to the kalman filter (2001) SIGGRAPH 2001 Course Notes
dc.descriptionBlake, A., Isard, M., (1998) Active Contours: the Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion, , Springer-Verlag
dc.descriptionBlanz, V., Vetter, T., A morphable model for the synthesis of 3d faces (1999) SIGGRAPH, pp. 187-194. , August
dc.descriptionBrand, M., Bhotika, R., Flexible flow for 3d nonrigid tracking and shape recovery (2001) CVPR, pp. 315-322
dc.descriptionBregler, C., Hertzmann, A., Biermann, H., Recovering Non-Rigid 3D Shape from Image Streams (2000) CVPR
dc.descriptionBrown, L., 3d head tracking using motion adaptive texture-mapping (2001) CVPR, pp. 998-1005
dc.descriptionCascia, M., Sclaroff, S., Athitsos, V., Fast, reliable head tracking under varying illumination: An approach based on registration of texture-mapped 3d models (2000) IEEE Trans. PAMI, 22 (4), pp. 322-336
dc.descriptionChung, K., (1974) A Course in Probability Theory, , Academic Press, Inc., 2nd edition
dc.descriptionCootes, T., Taylor, C., Active shape models - Their training and application (1995) CVIU, 61 (1), pp. 38-59
dc.descriptionDe Carlo, D., Metaxas, D., Optical flow constraints on deformable models with applications to face tracking (2000) IJCV, 38 (2), pp. 99-127. , July
dc.descriptionDellaert, F., Burgard, W., Fox, D., Thrun, S., Using the condensation algorithm for robust, vision-based mobile robot localization (1999) CVPR
dc.descriptionGoldenstein, S., Vogler, C., Metaxas, D., Statistical cue integration in DAG deformable models (2003) IEEE Trans. PAMI, 25 (7), pp. 801-813
dc.descriptionGordon, N., Salmon, D., Smith, A., A novel approach to nonlinear/nongaussian bayesian state estimation (1993) IEEE Proc. Radar Signal Processing, (140), pp. 107-113
dc.descriptionIsard, M., Blake, A., CONDENSATION: Conditional density propagation for visual tracking (1998) IJVC, 29 (1), pp. 5-28
dc.descriptionKing, O., Forsyth, D., How does CONDENSATION behave with a finite number of samples? (2000) ECCV, pp. 695-709
dc.descriptionMaybeck, P., (1979) Stochastic Models, Estimation, and Control, , Academic Press
dc.descriptionMeer, P., Stewart, C.V., Tyler, D.E., Robust computer vision: An interdisciplinary challenge (2000) CVIU, (78), pp. 1-7
dc.descriptionMetaxas, D., (1996) Physics-based Deformable Models: Applications to Computer Vision, Graphics and Medical Imaging, , Kluwer Academic Publishers
dc.descriptionPighin, F., Szeliski, R., Salesin, D., Resynthesizing facial animation through 3d model-based tracking (1999) ICCV, pp. 143-150
dc.descriptionPighin, F., Szeliski, R., Salesin, D., Modeling and animating realistic faces from images (2002) IJVC, 50 (2), pp. 143-169
dc.descriptionStolfi, J., Figueiredo, L., (1997) Self-validated Numerical Methods and Applications, , 21° Colóquio Brasileiro de Matemática, IMPA
dc.descriptionTao, H., Huang, T., Visual estimation and compression of facial motion parameters: Elements of a 3D model-based video coding system (2002) IJVC, 50 (2), pp. 111-125
dc.descriptionWan, E.A., Van Der Merwe, R., (2001) Kalman Filtering and Neural Networks, p. 50. , chapter Chapter 7: The Unscented Kalman Filter, Wiley Publishing
dc.descriptionWang, L., Hu, W., Tan, T., Face tracking using motion-guided dynamic template matching (2002) ACCV
dc.descriptionWen, Z., Huang, T., Capturing subtle facial motions in 3d face tracking (2003) ICCV, pp. 1343-1350
dc.descriptionShan, Z.Z.Y., Liu, Z., Model-based bundle adjustment with application to face modeling (2001) ICCV, pp. 644-651
dc.languageen
dc.publisher
dc.relationProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
dc.rightsfechado
dc.sourceScopus
dc.title3d Facial Tracking From Corrupted Movie Sequences
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución