dc.creatorDe Figueiredo L.H.
dc.creatorStolfi J.
dc.date2004
dc.date2015-06-26T14:24:24Z
dc.date2015-11-26T14:13:31Z
dc.date2015-06-26T14:24:24Z
dc.date2015-11-26T14:13:31Z
dc.date.accessioned2018-03-28T21:14:16Z
dc.date.available2018-03-28T21:14:16Z
dc.identifier
dc.identifierNumerical Algorithms. , v. 37, n. 1-4 SPEC. ISS., p. 147 - 158, 2004.
dc.identifier10171398
dc.identifier10.1023/B:NUMA.0000049462.70970.b6
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-10044296444&partnerID=40&md5=e059861876d4111530ec85fb61c6803a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/94442
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/94442
dc.identifier2-s2.0-10044296444
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1242299
dc.descriptionAffine arithmetic is a model for self-validated numerical computation that keeps track of first-order correlations between computed and input quantities. We explain the main concepts in affine arithmetic and how it handles the dependency problem in standard interval arithmetic. We also describe some of its applications.
dc.description37
dc.description1-4 SPEC. ISS.
dc.description147
dc.description158
dc.descriptionBerz, M., Hoffstätter, G., Computation and application of Taylor polynomials with interval remainder bounds (1998) Reliable Comput., 4 (1), pp. 83-97
dc.descriptionDe Cusatis Jr., A., De Figueiredo, L.H., Gattass, M., Interval methods for ray casting implicit surfaces with affine arithmetic (1999) Proc. of SIBGRAPI'99, pp. 65-71
dc.descriptionDe Figueiredo, L.H., Surface intersection using affine arithmetic (1996) Proc. of Graphics Interface'96, pp. 168-175
dc.descriptionDe Figueiredo, L.H., Stolfi, J., Adaptive enumeration of implicit surfaces with affine arithmetic (1996) Comput. Graphics Forum, 15 (5), pp. 287-296
dc.descriptionDe Figueiredo, L.H., Stolfi, J., Velho, L., Approximating parametric curves with strip trees using affine arithmetic (2002) Proc. of SIBGRAPI 2002, pp. 163-170
dc.descriptionHansen, E., A generalized interval arithmetic (1975) Lecture Notes in Computer Science, 29, pp. 7-18. , Interval Mathematics, ed. K. Nickel, Springer, New York
dc.descriptionHeidrich, W., Seidel, H.-P., Ray-tracing procedural displacement shaders (1998) Proc. of Graphics Interface'98, pp. 8-16
dc.descriptionHeidrich, W., Slusallek, P., Seidel, H.-P., Sampling procedural shaders using affine arithmetic (1998) ACM Trans. Graphics, 17 (3), pp. 158-176
dc.descriptionStolfi, J., De Figueiredo, L.H., Self-Validated Numerical Methods and Applications (1997) Monograph for 21st Brazilian Mathematics Colloquium, , ftp://ftp.tecgraf.puc-rio.br/pub/lhf/doc/cbm97.ps.gz, IMPA, Rio de Janeiro
dc.descriptionTupper, J.A., Graphing Equations with Generalized Interval Arithmetic, , http://www.dgp.utoronto.ca/people/mooncake/msc.html, Master's thesis, Graduate Department of Computer Science, University of Toronto
dc.descriptionZiegler, G.M., Lectures on Polytopes (1995) Graduate Texts in Mathematics, 152. , Springer, New York
dc.languageen
dc.publisher
dc.relationNumerical Algorithms
dc.rightsfechado
dc.sourceScopus
dc.titleAffine Arithmetic: Concepts And Applications
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución