dc.creator | De Figueiredo L.H. | |
dc.creator | Stolfi J. | |
dc.date | 2004 | |
dc.date | 2015-06-26T14:24:24Z | |
dc.date | 2015-11-26T14:13:31Z | |
dc.date | 2015-06-26T14:24:24Z | |
dc.date | 2015-11-26T14:13:31Z | |
dc.date.accessioned | 2018-03-28T21:14:16Z | |
dc.date.available | 2018-03-28T21:14:16Z | |
dc.identifier | | |
dc.identifier | Numerical Algorithms. , v. 37, n. 1-4 SPEC. ISS., p. 147 - 158, 2004. | |
dc.identifier | 10171398 | |
dc.identifier | 10.1023/B:NUMA.0000049462.70970.b6 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-10044296444&partnerID=40&md5=e059861876d4111530ec85fb61c6803a | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/94442 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/94442 | |
dc.identifier | 2-s2.0-10044296444 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1242299 | |
dc.description | Affine arithmetic is a model for self-validated numerical computation that keeps track of first-order correlations between computed and input quantities. We explain the main concepts in affine arithmetic and how it handles the dependency problem in standard interval arithmetic. We also describe some of its applications. | |
dc.description | 37 | |
dc.description | 1-4 SPEC. ISS. | |
dc.description | 147 | |
dc.description | 158 | |
dc.description | Berz, M., Hoffstätter, G., Computation and application of Taylor polynomials with interval remainder bounds (1998) Reliable Comput., 4 (1), pp. 83-97 | |
dc.description | De Cusatis Jr., A., De Figueiredo, L.H., Gattass, M., Interval methods for ray casting implicit surfaces with affine arithmetic (1999) Proc. of SIBGRAPI'99, pp. 65-71 | |
dc.description | De Figueiredo, L.H., Surface intersection using affine arithmetic (1996) Proc. of Graphics Interface'96, pp. 168-175 | |
dc.description | De Figueiredo, L.H., Stolfi, J., Adaptive enumeration of implicit surfaces with affine arithmetic (1996) Comput. Graphics Forum, 15 (5), pp. 287-296 | |
dc.description | De Figueiredo, L.H., Stolfi, J., Velho, L., Approximating parametric curves with strip trees using affine arithmetic (2002) Proc. of SIBGRAPI 2002, pp. 163-170 | |
dc.description | Hansen, E., A generalized interval arithmetic (1975) Lecture Notes in Computer Science, 29, pp. 7-18. , Interval Mathematics, ed. K. Nickel, Springer, New York | |
dc.description | Heidrich, W., Seidel, H.-P., Ray-tracing procedural displacement shaders (1998) Proc. of Graphics Interface'98, pp. 8-16 | |
dc.description | Heidrich, W., Slusallek, P., Seidel, H.-P., Sampling procedural shaders using affine arithmetic (1998) ACM Trans. Graphics, 17 (3), pp. 158-176 | |
dc.description | Stolfi, J., De Figueiredo, L.H., Self-Validated Numerical Methods and Applications (1997) Monograph for 21st Brazilian Mathematics Colloquium, , ftp://ftp.tecgraf.puc-rio.br/pub/lhf/doc/cbm97.ps.gz, IMPA, Rio de Janeiro | |
dc.description | Tupper, J.A., Graphing Equations with Generalized Interval Arithmetic, , http://www.dgp.utoronto.ca/people/mooncake/msc.html, Master's thesis, Graduate Department of Computer Science, University of Toronto | |
dc.description | Ziegler, G.M., Lectures on Polytopes (1995) Graduate Texts in Mathematics, 152. , Springer, New York | |
dc.language | en | |
dc.publisher | | |
dc.relation | Numerical Algorithms | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Affine Arithmetic: Concepts And Applications | |
dc.type | Actas de congresos | |