dc.creatorCarvajal X.
dc.date2004
dc.date2015-06-26T14:24:27Z
dc.date2015-11-26T14:13:26Z
dc.date2015-06-26T14:24:27Z
dc.date2015-11-26T14:13:26Z
dc.date.accessioned2018-03-28T21:14:12Z
dc.date.available2018-03-28T21:14:12Z
dc.identifier
dc.identifierElectronic Journal Of Differential Equations. , v. 2004, n. , p. 1 - 10, 2004.
dc.identifier10726691
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-3042546081&partnerID=40&md5=93feedff89a39c6f67907973dc807b65
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/94466
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/94466
dc.identifier2-s2.0-3042546081
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1242279
dc.descriptionWe prove that the initial value problem associated with ∂tu + i∝ ∂2 xu + β∂3 xu + iy|u|2u = 0, x, t ∈ ℝ, is locally well-posed in Hs for s > -1/4.
dc.description2004
dc.description
dc.description1
dc.description10
dc.descriptionAblowitz, M.J., Hammack, J., Henderson, D., Schober, C.M., Long-time dynamics of the modulational instability of deep water waves (2001) Phisica D., pp. 416-433
dc.descriptionCarvajal, X., (2002) Propriedades Das Soluções de Uma Equação de Schrödinger Não Linear de Alta Ordem, , PhD Thesis, Instituto de matemática pura e aplicada, IMPA, Rio de Janeiro, Brazil
dc.descriptionCarvajal, X., Linares, F., A higher order nonlinear Schrödinger equation with variable coefficients (2003) Differential and Integral Equations, 16 (9), pp. 1111-1130
dc.descriptionCarvajal, X., Linares, F., Some Properties for a Higher Order Nonlinear Schrödinger Equation, , Preprint
dc.descriptionCarvajal, X., Panthee, M., Unique Continuation Property for a Higher Oder Nonlinear Schrödinger Equation, , Preprint
dc.descriptionCazenave, T., Weissler, F., The Cauchy problem for the critical nonlinear Schrödinger Equations in Hs (1990) Nonlinear Anal., 14, pp. 807-836
dc.descriptionClarson, P.A., Cosgrove, C.M., Painlevé analysis of the non-linear Schrödinger family of equations (1987) Journal of Physics A: Math. and Gen., 20, pp. 2003-2024
dc.descriptionGinibre, J., Tsutsumi, Y., Velo, G., On the Cauchy problem for the Zakharov system (1997) J. Funct. Anal., 151, pp. 384-436
dc.descriptionGromov, E.M., Tyutin, V.V., Vorontzov, D.E., Short vector solitons (2001) Physics Letters A, 287, pp. 233-239
dc.descriptionHasegawa, A., Kodama, Y., Nonlinear pulse propagation in a monomode dielectric guide (1987) IEEE Journal of Quantum Electronics, 23, pp. 510-524
dc.descriptionKenig, C.E., Ponce, G., Vega, L., Well-Posedness and Scattering Results for the Generalized Korteweg-de Vries Equation via the Contraction Principle (1993) Comm. on Pure and Applied Math., 66, pp. 527-620
dc.descriptionKenig, C.E., Ponce, G., Vega, L., A bilinear estimate with applications to the KdV equation (1996) J. Amer. Math. Soc., 9, pp. 573-603
dc.descriptionKenig, C.E., Ponce, G., Vega, L., On the ill-posedness of some canonical dispersive equations (2001) Duke Mathematical Journal, 106, pp. 617-633
dc.descriptionKodama, Y., Optical solitons in a monomode fiber (1985) Journal of Statistical Phys., 39, pp. 597-614
dc.descriptionLaurey, C., The Cauchy problem for a third order nonlinear Schrödinger equation (1992) C.R.A.S. Paris, 315, pp. 165-168. , Serie I
dc.descriptionLaurey, C., The Cauchy Problem for a Third Order Nonlinear Schrödinger Equation (1997) Nonlinear Analysis, 29, pp. 121-158. , TMA
dc.descriptionLaurey, C., On a Nonlinear Dispersive Equation with Time Dependent Coefficients (2001) Advances in Differential Equations, 6, pp. 577-612
dc.descriptionMamyshev, P.V., Generation and compression of femtosecond solitons in optical fibers (1992) Optical Solitons-Theory and Experiment, 10, pp. 266-313. , J.R. Taylor Ed Cambridge Studies in Modern Optics
dc.descriptionOsawa, T., Tsutsumi, Y., Space-time estimates for null gauge forms and nonlinear Schrödinger equations (1998) Differential Integral Equations, 11, pp. 201-222
dc.descriptionPorsezian, K., Nakkeeran, K., Singularity Structure Analysis and Complete Integrability of the Higher Order Nonlinear Schrödinger equations (1996) Chaos, Solitons and Fractals, pp. 377-382
dc.descriptionPorsezian, K., Shanmugha, P., Sundaram, K., Mahalingam, A., (1994) Phys. Rev., 50 E, p. 1543
dc.descriptionStaffilani, G., On the Generalized Korteweg-de Vries-Type Equations (1997) Differential and Integral Equations, 10, pp. 777-796
dc.descriptionSulem, C., Sulem, P.L., The nonlinear Schrödinger equation: Sel-focusing and wave collapse (1999) Applied Mathematical Scienses, 139, 350p. , Springer Verlag
dc.descriptionTakaoka, H., Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity (1999) Adv. Diff. Eq., 4, pp. 561-680
dc.descriptionTao, T., Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations Amer. J. Math., , submitted
dc.descriptionTsutsumi, Y., L2-solutions for nonlinear Schrödinger equations and nonlinear groups (1987) Funkcial. Ekvac., 30, pp. 115-125
dc.languageen
dc.publisher
dc.relationElectronic Journal of Differential Equations
dc.rightsaberto
dc.sourceScopus
dc.titleLocal Well-posedness For A Higher Order Nonlinear Schrödinger Equation In Sobolev Spaces Of Negative Indices
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución