dc.creatorGuillen-Gonzalez F.
dc.creatorRodriguez-Bellido M.A.
dc.creatorRojas-Medar M.A.
dc.date2004
dc.date2015-06-26T14:23:47Z
dc.date2015-11-26T14:12:17Z
dc.date2015-06-26T14:23:47Z
dc.date2015-11-26T14:12:17Z
dc.date.accessioned2018-03-28T21:12:54Z
dc.date.available2018-03-28T21:12:54Z
dc.identifier
dc.identifierAnnales De L'institut Henri Poincare. Annales: Analyse Non Lineaire/nonlinear Analysis. , v. 21, n. 6, p. 807 - 826, 2004.
dc.identifier2941449
dc.identifier10.1016/j.anihpc.2003.11.002
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-5744226324&partnerID=40&md5=c37c1c380f95db8b3a8ed0b4dcc506cc
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/94252
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/94252
dc.identifier2-s2.0-5744226324
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241956
dc.descriptionThe main subject of this work is to study the concept of very weak solution for the hydrostatic Stokes system with mixed boundary conditions (non-smooth Neumann conditions on the rigid surface and homogeneous Dirichlet conditions elsewhere on the boundary). In the Stokes framework, this concept has been studied by Conca [Rev. Mat. Apl. 10 (1989)] imposing non-smooth Dirichlet boundary conditions. In this paper, we introduce the dual problem that turns out to be a hydrostatic Stokes system with non-free divergence condition. First, we obtain strong regularity for this dual problem (which can be viewed as a generalisation of the regularity results for the hydrostatic Stokes system with free divergence condition obtained by Ziane [Appl. Anal. 58 (1995)]). Afterwards, we prove existence and uniqueness of very weak solution for the (primal) problem. As a consequence of this result, the existence of strong solution for the non-stationary hydrostatic Navier-Stokes equations is proved, weakening the hypothesis over the time derivative of the wind stress tensor imposed by Guillén-González, Masmoudi and Rodríguez-Bellido [Differential Integral Equations 50 (2001)]. © 2004 Elsevier SAS. All rights reserved.
dc.description21
dc.description6
dc.description807
dc.description826
dc.descriptionAmrouche, C., Girault, V., Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension (1994) Czechoslovak Math. J., 44 (119), pp. 109-140
dc.descriptionAzérad, P., Guillén, F., Mathematical justification of the hydrostatic approximation in the Primitive Equations of qeophysical fluid dynamics (2001) SIAM J. Math. Anal., 33 (4), pp. 847-859
dc.descriptionBesson, O., Laydi, M.R., Some estimates for the anisotropic Navier-Stokes equations and for the hydrostatic approximation (1992) M2AN-Mod. Math. Ana. Nume., 7, pp. 855-865
dc.descriptionCattabriga, L., Sur un problema al contorno relativo al sistema di equazioni di Stokes (1961) Rend. Mat. Sem. Univ. Padova, 31, pp. 308-340
dc.descriptionChacón, T., Guillén, F., An intrinsic analysis of existence of solutions for the hydrostatic approximation of the Navier-Stokes equations (2000) C. R. Acad. Sci. Paris, Série I, 330, pp. 841-846
dc.descriptionConca, C., Stokes equations with non-smooth data (1989) Revista de Matemáticas Aplicadas, 10, pp. 115-122
dc.descriptionGirault, V., Raviart, P.A., (1986) Finite Element Methods for Navier-Stokes Equations, , Berlin: Springer-Verlag
dc.descriptionGuillén-González, F., Rodríguez-Bellido, M.A., On the strong solutions of the Primitive Equations in 2D domains (2002) Nonlin. Anal., 50, pp. 621-646
dc.descriptionGuillén-González, F., Masmoudi, N., Rodríguez-Bellido, M.A., Anisotropic estimates and strong solutions of the Primitive Equations (2001) Differential Integral Equations, 14 (11), pp. 1381-1408
dc.descriptionLewandowski, R., (1997) Analyse Mathématique et Océanographie, , Masson
dc.descriptionLions, J.L., Magenes, E., (1969) Problèmes aux Limites Non Homogènes et Applications, 1. , Paris: Dunod
dc.descriptionLions, J.L., Temam, R., Wang, S., New formulation of the primitive equations of the atmosphere and applications (1992) Nonlinearity, 5, pp. 237-288
dc.descriptionLions, J.L., Temam, R., Wang, S., On the equations of the large scale ocean (1992) Nonlinearity, 5, pp. 1007-1053
dc.descriptionPedlosky, J., (1987) Geophysical Fluid Dynamics, , Berlin: Springer-Verlag
dc.descriptionTemam, R., (1977) Navier-Stokes Equations: Theory and Numerical Analysis, , Amsterdam: North Holland
dc.descriptionZiane, M., Regularity results for Stokes type systems (1995) Appl. Anal., 58, pp. 263-292
dc.languageen
dc.publisher
dc.relationAnnales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis
dc.rightsaberto
dc.sourceScopus
dc.titleHydrostatic Stokes Equations With Non-smooth Date For Mixed Boundary Conditions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución