dc.creatorNeto I.G.
dc.creatorCavalca K.L.
dc.creatorBannwart A.C.
dc.date2005
dc.date2015-06-26T14:10:06Z
dc.date2015-11-26T14:10:15Z
dc.date2015-06-26T14:10:06Z
dc.date2015-11-26T14:10:15Z
dc.date.accessioned2018-03-28T21:10:55Z
dc.date.available2018-03-28T21:10:55Z
dc.identifier
dc.identifierSae Technical Papers. , v. , n. , p. - , 2005.
dc.identifier
dc.identifier10.4271/2005-01-4004
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84877451813&partnerID=40&md5=005fa321499a77fdfdfe8212f829d11b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93966
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93966
dc.identifier2-s2.0-84877451813
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241465
dc.descriptionThis work has for purpose to develop a mathematical model for the hydrodynamic lubrication of bearings with oscillating motion. The motivation lies in the tribology of internal combustion engines, specifically the lubrication problem at the bearing existing between the connecting rod and the piston pin. This kind of bearing does not perform a complete rotation, thus characterizing a new class of oscillating motion bearings. For the analysis of lubrication, a viscous fluid flow with negligible inertia inside a narrow gap formed by two surfaces is considered. The surfaces can be considered flat and are inclined to each other. The inner surface is fixed whereas the outer one performs an oscillating motion which generates a combined Couette-Poiseuille flow inside the gap. Using the same assumptions as in classical Reynolds' lubrication equation, the simplified mass and momentum conservation equations are analytically solved to determine the velocity and pressure distributions. It is shown that at the limit when the oscillation frequency tends to zero, these distributions give Reynolds' results back. The forces on the inner surface are obtained and shown in graphical form. Copyright © 2005 Society of Automotive Engineers, Inc.
dc.description
dc.description
dc.description
dc.description
dc.descriptionCataruzzi, E.F., (1998) Modelagem de Mancais Hidrodinâmicos Multilobulares, , Unicamp, Campinas, Brazil
dc.descriptionCunha, C., (2003) Métodos Numéricos - 2a Ed., , Editora Unicamp, Campinas, Brasil
dc.descriptionGander, W., Gautschi, W., Adaptive Quadrature - Revisited (2000) BIT, 40 (1), pp. 084-101
dc.descriptionGresham, R.M., What's Tribology (2004) Tribology and Lubrication Technology, 60 (11), pp. 26-28
dc.descriptionHamrock, B.J., Schmid, S.R., Jacobson, B.O., (2004) Fundamentals of Fluid Film Lubrication - 2nd Ed, , Marcel Dekker, Inc. New York
dc.descriptionHelmetag, K., Lubrication Formulation: Developing a Simple Model (2004) Tribology and Lubrication Technology, 60 (1), pp. 20-24
dc.descriptionHeywood, J.B., (1988) Internal Combustion Engine Fundamentals, , McGraw-Hill. Inc
dc.descriptionKrämer, E., (1993) Dynamics of Rotors and Foundations, , Springer-Verlag, Berlin Heidelberg, Germany
dc.descriptionNorton, R.L., (1996) Machine Design, , Prentice Hall Inc
dc.descriptionShampine, L.F., Reichelt, M.W., The Matlab ODE Suite (1997) Society for Industrial and Applied Mathematics, 18 (1), pp. 1-22
dc.descriptionStoterau, R.L., (2004) Tribologia, , Universidade Federal de Santa Catarina, Centro Tecnológico, Departamento de Engenharia Mecânica
dc.descriptionTrindade, M.A., Sampaio, R., On the Numerical Integration of Rigid Body Nonlinear Dynamics in Presence of Parameters Singularities (2001) Journal of the Brazilian Society of Mechanical Sciences, 23 (1)
dc.descriptionWhite, F.M., (1974) Viscous Fluid Flow - 2nd Ed, , McGraw-Hill. Inc
dc.languageen
dc.publisher
dc.relationSAE Technical Papers
dc.rightsfechado
dc.sourceScopus
dc.titleHydrodynamic Lubrication Applied To Bearings With Oscillating Motion In Internal Combustion Engines
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución