Artículos de revistas
Sugarcane Performance Under Phosphorus Deficiency: Physiological Responses And Genotypic Variation
Registro en:
Plant And Soil. Kluwer Academic Publishers, v. 386, n. 01/02/15, p. 273 - 283, 2014.
0032079X
10.1007/s11104-014-2252-0
2-s2.0-84919667298
Autor
Zambrosi F.C.B.
Ribeiro R.V.
Marchiori P.E.R.
Cantarella H.
Landell M.G.A.
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Background and aim: Developing genotypes with enhanced performance under phosphorus (P) deficiency can be described as an approach to improving production sustainability. This study investigated the physiological responses of sugarcane varieties to varying P availability and the plant traits contributing to P efficiency (shoot dry matter production under low P availability).Methods: Sugarcane varieties IACSP94-2101, IACSP95-5000, RB86-7515, IAC91-1099, IACSP94-2094 and IAC87-3396 were grown under low (25 mg P kg−1 soil) and high (400 mg P kg−1 soil) P supply, and the leaf gas exchange, photochemical activity, plant growth and P uptake were evaluated.Results: The sugarcane varieties responded distinctly to a low P supply, as indicated by differences in root and shoot growth, leaf area, net CO2 assimilation, photosynthetic P utilization efficiency, leaf P concentration and P uptake. The following ranking was obtained for P efficiency: IACSP94-2094 = IACSP95-5000 > IAC87-3396 = RB86-7515 = IACSP94-2101 = IAC91-1099.Conclusion: Greater leaf area, net CO2 assimilation and P acquisition efficiency were combined in the more P-efficient varieties but not in the less efficient ones. Although it was not possible to separate cause and effect, such finding might be explained by the positive effect of improved leaf P concentration on leaf area and net CO2 assimilation, which in turn contributed to sustaining improved plant performance under a low P supply. 386 01/02/15 273 283 CNPq; Conselho Nacional de Desenvolvimento Científico e Tecnológico; #2011/18446-0; FAPESP; Conselho Nacional de Desenvolvimento Científico e Tecnológico Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Assuero, S.G., Mollier, A., Pellerin, S., The decrease in growth of phosphorus-deficient maize leaves is related to a lower cell production (2004) Plant Cell Environ, 27, pp. 887-895. , COI: 1:CAS:528:DC%2BD2cXmt1ygtbs%3D Balemi, T., Schenk, M.K., Genotype difference of potato in carbon budgeting as a mechanism of phosphorus utilization efficiency (2009) Plant Soil, 322, pp. 91-99. , COI: 1:CAS:528:DC%2BD1MXhtVWisr3F Bataglia, O.C., Furlani, A.M.C., Teixeira, J.P.F., Furlani, P.R., Gallo, J.R., (1983) Método de análise química de plantas, , Instituto Agronômico, Campinas: Besford, R.T., A rapid tissue test for diagnosing phosphorus deficiency in the tomato plant (1980) Ann Bot, 45, pp. 225-227. , COI: 1:CAS:528:DyaL3MXktlKhug%3D%3D Camargo, O.A., Moniz, A.C., Jorge, J.A., Valadares, J.M.A.S., (1986) Métodos de análise química e física de solos, , Instituto Agronômico, Campinas: Elliott, G.C., Läuchli, A., Evaluation of an acid phosphatase assay for detection of phosphorus deficiency in leaves of maize (Zea mays L.) (1986) J Plant Nutr, 9, pp. 1469-1477. , COI: 1:CAS:528:DyaL28Xmt1Gitbk%3D Foyer, C., Spencer, C., The relationship between phosphate status and photosynthesis in leaves. Effects on intracelular orthophosphate distribution, photosynthesis and assimilate partitioning (1986) Planta, 167, pp. 369-375. , COI: 1:STN:280:DC%2BC2c7nt1Oktw%3D%3D, PID: 24240306 Fredeen, A.L., Rao, I.M., Terry, N., Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max (1989) Plant Physiol, 89, pp. 225-230. , COI: 1:CAS:528:DyaL1MXhtFelur0%3D, PID: 16666518 Fujita, K., Kai, Y., Takayanagi, M., El-Shemy, H., Adu-Gyamfi, J.J., Mohapatra, P.K., Genotypic variability of pigeonpea in distribution of photosynthetic carbon at low phosphorus levels (2004) Plant Sci, 166, pp. 641-649. , COI: 1:CAS:528:DC%2BD2cXhtFWgsb4%3D Gahoonia, T.S., Nielsen, N.E., Root traits as tools for creating phosphorus efficient crop varieties (2004) Plant Soil, 260, pp. 47-57 Gopalasundaram, P., Bhaskaran, A., Rakkiyappan, P., Integrated nutrient management in sugarcane (2012) Sugar Tech, 14, pp. 3-20. , COI: 1:CAS:528:DC%2BC38Xot1ymtLY%3D Hidaka, A., Kitayama, K., Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients (2009) J Ecol, 97, pp. 984-991. , COI: 1:CAS:528:DC%2BD1MXhtFOktL%2FF Kavanová, M., Lattanzi, F.A., Grimoldi, A.A., Schnyder, H., Phosphorus deficiency decreases cell division and elongation in grass leaves (2006) Plant Physiol, 141, pp. 766-775. , PID: 16648218 Lambers, H., Shane, M.W., Crameri, M.D., Pearse, S.J., Veneklaas, E.J., Root structure and unctioning for efficient acquisition of phosphorus: matching morphological and physiological traits (2006) Ann Bot, 98, pp. 693-713. , PID: 16769731 Landell, M.G.A., Bressiani, J.A., Melhoramento genético, caracterização e manejo varietal (2008) Cana-de-açúcar, pp. 101-156. , Dinardo-Miranda LL, Vasconcellos ACM, Landell MGA, (eds), Instituto Agronômico, Campinas: Landell, M.G.A., Prado, H., Vasconcelos, A.C.M., Perecin, D., Rosseto, R., Bidoia, M.A.P., Silva, M.A., Xavier, M.A., Oxisol subsurface chemical attributes related to sugarcane productivity (2003) Sic Agric, 60, pp. 741-745. , COI: 1:CAS:528:DC%2BD3sXpvFChsrs%3D Lynch, J.P., Ho, M.D., Rhizoeconomics. Carbon costs of phosphorus acquisition (2005) Plant Soil, 269, pp. 45-56. , COI: 1:CAS:528:DC%2BD2MXks1Oisrw%3D Mollier, A., Pellerin, S., Maize root system growth and development as influenced by phosphorus deficiency (1999) J Exp Bot, 50, pp. 487-497. , COI: 1:CAS:528:DyaK1MXit1eqtb4%3D Nielsen, K.L., Eshel, A., Lynch, J.P., The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes (2001) J Exp Bot, 52, pp. 329-339. , COI: 1:CAS:528:DC%2BD3MXjtVaju7w%3D, PID: 11283178 Pieters, A.J., Paul, M.J., Lawlor, D.W., Low sink demand limits photosynthesis under Pi deficiency (2001) J Exp Bot, 52, pp. 1083-1091. , COI: 1:CAS:528:DC%2BD3MXltVeisrk%3D, PID: 11432924 Plénet, D., Mollier, A., Pellerin, S., Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components (2000) Plant Soil, 224, pp. 259-272 Raghothama, K.G., Karthikeyan, A.S., Phosphate acquisition (2005) Plant Soil, 274, pp. 37-49. , COI: 1:CAS:528:DC%2BD2MXhtVWiurfJ Rao, I.M., Terry, N., Leaf status, photosynthesis, and carbon partitioning in sugar beet (1995) Plant Physiol, 107, pp. 1313-1321. , COI: 1:CAS:528:DyaK2MXltVClsLg%3D, PID: 12228438 Roháček, K., Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships (2002) Photosynthetica, 40, pp. 13-29 Rose, T.J., Wissuwa, M., Rethinking internal phosphorus utilization efficiency: a new approach is needed to improve PUE in grain crops (2012) Adv Agron, 116, pp. 185-217. , COI: 1:CAS:528:DC%2BC38XhslSlur%2FP Sato, A.M., Catuchi, T.A., Ribeiro, R.V., Souza, G.M., The use of network analysis to uncover homeostatic responses of a drought-tolerant sugarcane cultivar under severe water deficit and phosphorus supply (2010) Acta Physiol Plant, 32, pp. 1145-1151. , COI: 1:CAS:528:DC%2BC3MXktFahu7s%3D Schachtman, D.P., Reid, R.J., Ayling, S.M., Phosphorus uptake by plants: from soil to cell (1998) Plant Physiol, 116, pp. 447-453. , COI: 1:CAS:528:DyaK1cXht1ajtbc%3D, PID: 9490752 Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., Zhang, F., Phosphorus dynamics: from soil to plant (2011) Plant Physiol, 156, pp. 997-1005. , COI: 1:CAS:528:DC%2BC3MXptFWlur0%3D, PID: 21571668 Sundara, B., Phosphorus efficiency of sugarcane varieties in a tropical Alfisol (1994) Fertil Res, 39, pp. 83-88. , COI: 1:CAS:528:DyaK2MXktFKmtrg%3D Takahashi, S., Anwar, M.R., Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andosol (2007) Field Crop Res, 101, pp. 160-171 Tennant, D.A., Test of a modified line intersect method of estimating root length (1975) J Ecol, 63, pp. 995-1001 van Raij, B., Andarade, J.C., Cantarella, H., Quaggio, J.A., (2001) Análise química para avaliação da fertilidade de solos tropicais, , Instituto Agronômico, Campinas: Vance, C.P., Uhde-Stone, C., Allan, D.L., Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource (2003) New Phytol, 157, pp. 423-447. , COI: 1:CAS:528:DC%2BD3sXisF2gu70%3D Wissuwa, M., How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects (2003) Plant Physiol, 133, pp. 1947-1958. , COI: 1:CAS:528:DC%2BD2cXhvFKn, PID: 14605228 Wissuwa, M., Gamat, G., Ismail, A.M., Is root growth under phosphorus deficiency affected by source or sink limitations? (2005) J Exp Bot, 56, pp. 1943-1950. , COI: 1:CAS:528:DC%2BD2MXpvFKntb0%3D, PID: 15911558 Zambrosi, F.C.B., Adubação com fósforo em cana-soca e sua interação com magnésio (2012) Bragantia, 71, pp. 400-405. , COI: 1:CAS:528:DC%2BC3sXmt1Kmtr4%3D Zambrosi, F.C.B., Mattos, D., Jr., Syvertsen, J.P., Plant growth, leaf photosynthesis, and nutrient-use efficiency of citrus rootstocks decrease with phosphite supply (2011) J Plant Nutr Soil Sci, 174, pp. 487-495. , COI: 1:CAS:528:DC%2BC3MXmslahsr4%3D Zhao, D., Glaz, B., Comstock, J.C., Physiological and growth responses of sugarcane genotypes to nitrogen rate on a sand soil (2014) J Agron Crop Sci, 200, pp. 290-301. , COI: 1:CAS:528:DC%2BC2cXhtVymurzM