dc.creatorGiordani D.S.
dc.creatorDos Santos A.M.
dc.creatorKrahenbuhl M.A.
dc.creatorLona L.M.F.
dc.date2005
dc.date2015-06-26T14:10:02Z
dc.date2015-11-26T14:10:09Z
dc.date2015-06-26T14:10:02Z
dc.date2015-11-26T14:10:09Z
dc.date.accessioned2018-03-28T21:10:48Z
dc.date.available2018-03-28T21:10:48Z
dc.identifier0780390482; 9780780390485
dc.identifierProceedings Of The International Joint Conference On Neural Networks. , v. 4, n. , p. 2237 - 2242, 2005.
dc.identifier
dc.identifier10.1109/IJCNN.2005.1556249
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33750138797&partnerID=40&md5=f130b7295300bfe65fd1f63f07b98808
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93946
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93946
dc.identifier2-s2.0-33750138797
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241440
dc.descriptionArtificial Neural Networks (ANN) have demonstrated to be powerful tools to model non linear systems, such as high solid content latexes produced by emulsion polymerisation. This system has a great importance in the polymeric industry, essentially for environmental reasons, since they usually have water as continuous phase. In order to propose technical and economically feasible alternatives to control polymeric structure, this work is aimed to develop a new methodology based on artificial neural networks associated with calorimetry to preview polymeric structure. The designed artificial neural networks presented excellent results when tested with process condition variations as well as when they were submitted to test concerning to the variation on the proportion of monomers in the latex formulation. Hence, it was possible to conclude that artificial neural networks, associated to calorimetry, lead to an efficient method to preview the polymer composition in emulsion copolymerizations. © 2005 IEEE.
dc.description4
dc.description
dc.description2237
dc.description2242
dc.descriptionAsua, J.M., Urretabizkaia, A., Arzamendi, G., Unzué, M.J., (1994) J. Polym. Sci.: Part A: Polym. Chem., 32, p. 1779
dc.descriptionEl-Aasser, M.S., Leiza, J.R., Sudol, E.D., (1997) J. Appl. Polym. Sci., 64, p. 1797
dc.descriptionLovell, P.A., El-Aasser, M.S., (1999) Emulsion Polymerization and Emulsion Polymers, , Ed. John Wiley and Sons, New York
dc.descriptionMcKenna, T.F., Othman, S., Fevotte, G., Santos, A.M., Hamnmouri, H., (1998) DECHEMA Monographien, 134, p. 567. , Wiley-VCH, Berlin
dc.descriptionZeaiter, J., Gomes, V.G., Romagnoli, J.A., Barton, G.W., Inferential conversion monitoring and control in emulsion polymerisation through calorimetric measurements (2002) Chemical Engineering Journal, 89, p. 37
dc.descriptionVieira, R.A.M., Embiruçu, M., Sayer, C., Pinto, J.C., Lima, E.L., Control strategies for complex chemical processes. Applications in polymerization processes (2003) Computers and Chemical Engineering, 27, p. 1307
dc.descriptionVicente, M., Leiza, J.R., Asua, J.M., Maximizing production and polymer quality (MWD and composition) in emulsion polymerization reactors with limited capacity of heat removal (2003) Chemical Engineering Science, 58, p. 215
dc.descriptionZorzetto, L.F.M., Maciel Filho, R., Wolf-Maciel, M.R., Process modelling development through artificial neural networks and hybrid models (2000) Computers and Chemical Engineering, 24, p. 1355
dc.descriptionFernandes, F.A.N., Lona, L.M.F., Development of polymer resins using neural networks (2002) Polímeros: Ciência e Tecnologia, 12 (3), p. 164
dc.descriptionZhang, Z., Friedrich, K., Artificial neural networks applied to polymer composites: A review (2003) Composites Science and Technology., 63, p. 1
dc.descriptionHaykin, S., (1999) Neural Networks - A Comprehensivefoundation -2nd. Ed., , New York: Macmillan College Publishing Company
dc.descriptionRamirez-Beltran, N.D., Jackson, H., Application of neural networks to chemical process control (1999) Computers & Industrial Engineering, 37, p. 387
dc.descriptionYu, D.L., Gomm, J.B., Implementation of neural network predictive control to a multivariable chemical reactor (2003) Control Engineering Practice, 11 (11), p. 1315
dc.descriptionLaugier, S., Richon, D., Use of artificial neural networks for calculating derived thermodynamic quantities from volumetric property data (2003) Fluid Phase Equilibria, 210, p. 247
dc.descriptionBoillereaux, L.A., Cadet, C.B., Le Bail, A., Thermal properties estimation during thawing via real-time neural network learning (2003) Journal OfFood Engineering, 57, p. 17
dc.descriptionSvozil, D., Kvasničva, V., Pospíchal, J., (1997) Chemometrics and Intelligent Laboratory Systems, 39, p. 43
dc.descriptionDubé, M.A., Penlidis, A., A systematic approach to the study of multicomponent polymerization kinetics - The butyl acrylate /methyl methacrylate/vinyl acetate example: 1. Bulk Polymerization (1995) Polymer, 36, p. 587
dc.descriptionFévotte, G., Barudio, J., Guillot, J., An adaptive inferential measurement strategy for on-line monitoring of conversion in polymerization processes (1996) Thermochimica Acta, 289, p. 223
dc.descriptionGarson, G.D., Interpreting neural network connection weights (1991) Artificial Inteligence Expert, 6, p. 47
dc.descriptionOthman, N., Santos, A.M., Févotte, G., McKenna, T.F., Evaluation of emulsion polymerisation kinetics using non-linear state estimator (2000) Macromol. Symp., 150, pp. 109-114
dc.languageen
dc.publisher
dc.relationProceedings of the International Joint Conference on Neural Networks
dc.rightsfechado
dc.sourceScopus
dc.titleArtificial Neural Networks Associated To Calorimetry To Preview Polymer Composition Of High Solid Content Emulsion Copolymerizations
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución