dc.creator | Milani B.E.A. | |
dc.date | 2005 | |
dc.date | 2015-06-26T14:10:00Z | |
dc.date | 2015-11-26T14:10:08Z | |
dc.date | 2015-06-26T14:10:00Z | |
dc.date | 2015-11-26T14:10:08Z | |
dc.date.accessioned | 2018-03-28T21:10:46Z | |
dc.date.available | 2018-03-28T21:10:46Z | |
dc.identifier | 0780395689; 9780780395688 | |
dc.identifier | Proceedings Of The 44th Ieee Conference On Decision And Control, And The European Control Conference, Cdc-ecc '05. , v. 2005, n. , p. 6853 - 6858, 2005. | |
dc.identifier | | |
dc.identifier | 10.1109/CDC.2005.1583264 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-33847227651&partnerID=40&md5=497f5281d963439ca5d2b032880ff1d0 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/93938 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/93938 | |
dc.identifier | 2-s2.0-33847227651 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1241432 | |
dc.description | This paper is concerned with the construction of positively invariant convex polyhedral uniform ultimate boundedness sets for linear continuous-time systems with stabilizing deadzone feedback control laws. The objective is delimitation and region of attraction estimation of possible limit cycles around origin of open-loop unstable systems. Limit cycle delimitation is performed via construction of a positively invariant convex compact polyhedral estimate of the minimal positively invariant set containing an arbitrarily small neighborhood of origin. Region of attraction estimation is performed via construction of a piecewise-affine Lyapunov function assuring uniform ultimate boundedness in the above mentioned convex positively invariant polyhedral set. © 2005 IEEE. | |
dc.description | 2005 | |
dc.description | | |
dc.description | 6853 | |
dc.description | 6858 | |
dc.description | Slotine, J.E., Li, W., (1981) Applied Nonlinear Control, , Prentice-Hall, Englewood Cliffs, NJ; | |
dc.description | Zames, G., Falb, P.L., Stability Conditions for Systems with Monotone and Slope-restricted Nonlinearities (1968) SIAM Journal of Control, 6 (1), pp. 89-108 | |
dc.description | Khalil, H.K., (1992) Nonlinear Systems, , Macmillan, New York; | |
dc.description | Jönsson, U., Stability Criterion for Systems with Neutrally Stable Modes and Deadzone Nonlinearities CALTECH Report, , CDS97-007, 1997 | |
dc.description | La Salle, J.P., (1976) The Stability of Dynamical Systems, , SIAM, Philadelphia; | |
dc.description | Milani, B.E.A., Coelho, A.D., Ultimate Boundedness Sets for Discrete-time Linear Systems with Deadzone Feedback Controls (2001) 40th IEEE Conference on Decision and Control, pp. 2163-2164. , Orlando, FL | |
dc.description | Rouche, N., Habets, P., Laloy, M., (1997) Stability Theory by Lyapunov's Direct Method, , Springer Verlag, New York, NY; | |
dc.description | Bartle, R.G., Sherbert, D.R., (1982) Introduction to Real Analysis, , John Wiley & Sons Inc, New York, NY; | |
dc.description | Blanchini, F., Set Invariance in Control: A Survey (1999) Automatica, 35, pp. 1747-1746 | |
dc.description | Mangasarian, O.L., (1994) Nonlinear Programming, , SIAM, Philadelphia, PA; | |
dc.description | Milani, B.E.A., Piecewise-affine Lyapunov Functions for Discrete-time Linear Systems with Saturating Controls (2002) Automatica, 38 (12), pp. 2177-2184 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05 | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Ultimate Boundedness Sets For Continuous-time Linear Systems With Deadzone Feedback Controls | |
dc.type | Actas de congresos | |