dc.creatorMilani B.E.A.
dc.date2005
dc.date2015-06-26T14:10:00Z
dc.date2015-11-26T14:10:08Z
dc.date2015-06-26T14:10:00Z
dc.date2015-11-26T14:10:08Z
dc.date.accessioned2018-03-28T21:10:46Z
dc.date.available2018-03-28T21:10:46Z
dc.identifier0780395689; 9780780395688
dc.identifierProceedings Of The 44th Ieee Conference On Decision And Control, And The European Control Conference, Cdc-ecc '05. , v. 2005, n. , p. 6853 - 6858, 2005.
dc.identifier
dc.identifier10.1109/CDC.2005.1583264
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33847227651&partnerID=40&md5=497f5281d963439ca5d2b032880ff1d0
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93938
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93938
dc.identifier2-s2.0-33847227651
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241432
dc.descriptionThis paper is concerned with the construction of positively invariant convex polyhedral uniform ultimate boundedness sets for linear continuous-time systems with stabilizing deadzone feedback control laws. The objective is delimitation and region of attraction estimation of possible limit cycles around origin of open-loop unstable systems. Limit cycle delimitation is performed via construction of a positively invariant convex compact polyhedral estimate of the minimal positively invariant set containing an arbitrarily small neighborhood of origin. Region of attraction estimation is performed via construction of a piecewise-affine Lyapunov function assuring uniform ultimate boundedness in the above mentioned convex positively invariant polyhedral set. © 2005 IEEE.
dc.description2005
dc.description
dc.description6853
dc.description6858
dc.descriptionSlotine, J.E., Li, W., (1981) Applied Nonlinear Control, , Prentice-Hall, Englewood Cliffs, NJ;
dc.descriptionZames, G., Falb, P.L., Stability Conditions for Systems with Monotone and Slope-restricted Nonlinearities (1968) SIAM Journal of Control, 6 (1), pp. 89-108
dc.descriptionKhalil, H.K., (1992) Nonlinear Systems, , Macmillan, New York;
dc.descriptionJönsson, U., Stability Criterion for Systems with Neutrally Stable Modes and Deadzone Nonlinearities CALTECH Report, , CDS97-007, 1997
dc.descriptionLa Salle, J.P., (1976) The Stability of Dynamical Systems, , SIAM, Philadelphia;
dc.descriptionMilani, B.E.A., Coelho, A.D., Ultimate Boundedness Sets for Discrete-time Linear Systems with Deadzone Feedback Controls (2001) 40th IEEE Conference on Decision and Control, pp. 2163-2164. , Orlando, FL
dc.descriptionRouche, N., Habets, P., Laloy, M., (1997) Stability Theory by Lyapunov's Direct Method, , Springer Verlag, New York, NY;
dc.descriptionBartle, R.G., Sherbert, D.R., (1982) Introduction to Real Analysis, , John Wiley & Sons Inc, New York, NY;
dc.descriptionBlanchini, F., Set Invariance in Control: A Survey (1999) Automatica, 35, pp. 1747-1746
dc.descriptionMangasarian, O.L., (1994) Nonlinear Programming, , SIAM, Philadelphia, PA;
dc.descriptionMilani, B.E.A., Piecewise-affine Lyapunov Functions for Discrete-time Linear Systems with Saturating Controls (2002) Automatica, 38 (12), pp. 2177-2184
dc.languageen
dc.publisher
dc.relationProceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05
dc.rightsfechado
dc.sourceScopus
dc.titleUltimate Boundedness Sets For Continuous-time Linear Systems With Deadzone Feedback Controls
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución