dc.creatorCaleiro C.
dc.creatorCarnielli W.
dc.creatorConiglio M.
dc.creatorMarcos J.
dc.date2005
dc.date2015-06-26T14:09:54Z
dc.date2015-11-26T14:09:48Z
dc.date2015-06-26T14:09:54Z
dc.date2015-11-26T14:09:48Z
dc.date.accessioned2018-03-28T21:10:23Z
dc.date.available2018-03-28T21:10:23Z
dc.identifier3764372591; 9783764372590
dc.identifierLogica Universalis: Towards A General Theory Of Logic. Birkhäuser Verlag Basel • Boston • Berlin, v. , n. , p. 169 - 189, 2005.
dc.identifier
dc.identifier10.1007/3-7643-7304-0_10
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84895255290&partnerID=40&md5=5a690beb4ef179a6e30c33a1e7c80a21
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93909
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93909
dc.identifier2-s2.0-84895255290
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241337
dc.descriptionThe Polish logician Roman Suszko has extensively pleaded in the 1970s for a restatement of the notion of many-valuedness. According to him, as he would often repeat, there are but two logical values, true and false. As a matter of fact, a result by Wójcicki-Lindenbaum shows that any tarskian logic has a many-valued semantics, and results by Suszko-da Costa-Scott show that any many-valued semantics can be reduced to a two-valued one. So, why should one even consider using logics with more than two values? Because, we argue, one has to decide how to deal with bivalence and settle down the trade-off between logical 2-valuedness and truth-functionality, from a pragmatical standpoint. This paper will illustrate the ups and downs of a two-valued reduction of logic. Suszko's reductive result is quite non-constructive. We will exhibit here a way of effectively constructing the two-valued semantics of any logic that has a truth-functional finite-valued semantics and a sufficiently expressive language. From there, as we will indicate, one can easily go on to provide those logics with adequate canonical systems of sequents or tableaux. The algorithmic methods developed here can be generalized so as to apply to many non-finitely valued logics as well- or at least to those that admit of computable quasi tabular two-valued semantics, the so-called dyadic semantics.
dc.description
dc.description
dc.description169
dc.description189
dc.descriptionBatens, D., A bridge between two-valued and many-valued semantic systems: N-tuple semantics (1982) Proceedings of the XII International Symposium on Multiple-valued Logic, pp. 318-322. , IEEE Computer Science Press
dc.descriptionBelnap, N.D., (1977) A Useful Four-valued Logic, pp. 8-37. , Modern Uses of Multiple-Valued Logic J. M. Dunn, ed., D. Reidel Publishing, Boston
dc.descriptionBeziau, J.-Y., Universal logic (1994) Logica'94, Proceedings of the VIII International Symposium, pp. 73-93. , T. Childers and O. Majers, eds., Czech Academy of Science, Prague, CZ
dc.descriptionBeziau, J.-Y., Recherches sur la logique abstraite: Les logiques normales (1998) Acta Universitatis Wratislaviensis No. 2023, Logika, 18, pp. 105-114
dc.descriptionBeziau, J.-Y., Sequents and bivaluations (2001) Logique et Analyse (N. S.), 44 (176), pp. 373-394
dc.descriptionCaleiro, C., Carnielli, W.A., Coniglio, M.E., Marcos, J., Dyadic Semantics for Many-valued Logics, , http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/03-CCCM-dyadic2.pdf
dc.descriptionCaleiro, C., Carnielli, W.A., Coniglio, M.E., Marcos, J., How Many Logical Values Are There? Dyadic Semantics for Many-valued Logics, , Preprint
dc.descriptionCaleiro, C., Carnielli, W.A., Coniglio, M.E., Marcos, J., Suszko's Thesis and Dyadic Semantics, , http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/03-CCCM-dyadic1.pdf
dc.descriptionCaleiro, C., Marcos, J., Non-truth-functional fibred semantics (2001) Proceedings of the International Conference on Artificial Intelligence (IC-AI'2001), pp. 841-847. , http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/01-CM-fiblog10.ps, held in Las Vegas, USA, June 2001 H. R. Arabnia, ed., vol. II, CSREA Press, Athens GA, USA
dc.descriptionCarnielli, W.A., Systematization of the finite many-valued logics through the method of tableaux (1987) The Journal of Symbolic Logic, 52, pp. 473-493
dc.descriptionCarnielli, W.A., Lima-Marques, M., Society semantics for multiple-valued logics (1999) Advances in Contemporary Logic and Computer Science, 235, pp. 33-52. , W. A. Carnielli and I. M. L. D'Ottaviano, eds., Contemporary Mathematics Series, American Mathematical Society
dc.descriptionCarnielli, W.A., Marcos, J., Tableaux for logics of formal inconsistency (2001) Proceedings of the 2001 International Conference on Artificial Intelligence (IC-AI'2001), 2, pp. 848-852. , http://logica.rug.ac.be/~joao/Publications/Congresses/tableauxLFIs.pdf, held in Las Vegas, USA, June, H. R. Arabnia, ed., CSREA Press, Athens GA, USA, 2001
dc.descriptionCarnielli, W.A., Marcos, J., De Amo, S., Formal inconsistency and evolutionary databases (2000) Logic and Logical Philosophy, 8, pp. 115-152. , http://www.cle.unicamp.br/e-prints/abstract6.htm
dc.descriptionDa Costa, N.C.A., Calculs propositionnels pour les systemes formels inconsistants (1963) Comptes Rendus d'Academie des Sciences de Paris, 257, pp. 3790-3792
dc.descriptionDa Costa, N.C.A., Alves, E.H., A semantical analysis of the calculi Cn (1977) Notre Dame Journal of Formal Logic, 18, pp. 621-630
dc.descriptionDa Costa, N.C.A., Beziau, J.-Y., Bueno, O.A.S., Malinowski and Suszko on many-valued logics: On the reduction of many-valuedness to two-valuedness (1996) Modern Logic, 3, pp. 272-299
dc.descriptionFernandez, V.L., Coniglio, M.E., Combining valuations with society semantics (2003) Journal of Applied Non-classical Logics, 13 (1), pp. 21-46. , http://www.cle.unicamp.br/e-prints/abstract11.html
dc.descriptionMalinowski, G., (1993) Many-valued Logics, , Oxford Logic Guides 25, Clarendon Press, Oxford
dc.descriptionMarcos, J., (1999) Possible-translations Semantics (in Portuguese), , http://www.cle.unicamp.br/students/J.Marcos, Master's thesis, State University of Campinas Brazil
dc.descriptionScott, D., (1973) Background to Formalisation, pp. 244-273. , Truth, Syntax and Modality H. Leblanc, ed., North-Holland, Amsterdam
dc.descriptionScott, D., Completeness and axiomatizability in many-valued logic (1971) Proceedings of Tarski Symposium (L. Henkin Et. Al., Ed.), Proceedings of Symposia in Pure Mathematics, 25, pp. 411-436. , Berkeley
dc.descriptionSette, A.M., On the propositional calculus P1 (1973) Mathematica Japonicae, 18, pp. 173-180
dc.descriptionSuszko, R., Abolition of the fregean axiom, logic colloquium: Symposium on logic held at Boston, 1972-73 (1972) Lecture Notes in Mathematics, 453, pp. 169-239. , R. Parikh, ed., Springer-Verlag
dc.descriptionSuszko, R., Remarks on Lukasiewicz's three-valued logic (1975) Bulletin of the Section of Logic, 4, pp. 87-90
dc.descriptionSuszko, R., The Fregean axiom and Polish mathematical logic in the 1920's (1977) Studia Logica, 36, pp. 373-380
dc.descriptionTsuji, M., Many-valued logics and Suszko's Thesis revisited (1998) Studia Logica, 60 (2), pp. 299-309
dc.descriptionWojcicki, R., Logical matrices strongly adequate for structural sentential calculi (1969) Bulletin de l'Academie Polonaise des Sciences, Serie des Sciences Mathematiques, Astronomiques et Physiques, 17, pp. 333-335
dc.languageen
dc.publisherBirkhäuser Verlag Basel • Boston • Berlin
dc.relationLogica Universalis: Towards a General Theory of Logic
dc.rightsfechado
dc.sourceScopus
dc.titleTwo's Company: The Humbug Of Many Logical Values
dc.typeCapítulos de libros


Este ítem pertenece a la siguiente institución