dc.creatorArruda E.F.
dc.creatorDo Val J.B.R.
dc.creatorAlmudevar A.
dc.date2005
dc.date2015-06-26T14:09:50Z
dc.date2015-11-26T14:09:42Z
dc.date2015-06-26T14:09:50Z
dc.date2015-11-26T14:09:42Z
dc.date.accessioned2018-03-28T21:10:16Z
dc.date.available2018-03-28T21:10:16Z
dc.identifier780390458
dc.identifierIeee International Conference On Mechatronics And Automation, Icma 2005. , v. , n. , p. 665 - 670, 2005.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-27744510838&partnerID=40&md5=55563544af5c784a28bb18689c3d5be3
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93898
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93898
dc.identifier2-s2.0-27744510838
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241302
dc.descriptionIn this work, we present an approximate value iteration algorithm for a production and storage model with multiple production stages and a single final product, subject to random demand. We use linear function approximation schemes in subsets of the state space and represent a few key states in a look-up table form. We obtain some promising results and perform sensitivity analysis with respect to the parameters of the algorithm for the benchmark problem studied. © 2005 IEEE.
dc.description
dc.description
dc.description665
dc.description670
dc.descriptionDavis, M.H.A., (1993) Markov Models and Optimization, , London: Chapman and Hall
dc.descriptionSethi, S.P., Yan, H., Zhang, H., Zhang, Q., Optimal and hierarchical controls in dynamic stochastic manufacturing sytems: A review (2002) Manuf. & Serv, Ops. Management, 4 (2), pp. 133-170
dc.descriptionYin, K.K., Liu, H., Yin, G.G., Stochastic models and numerical solutions for production planning with applications to the paper industry (2003) Computers & Chemical Engineering, 27, pp. 1693-1706
dc.descriptionSi, J., Barto, A., Powell, W., Wunsch, D., (2004) Handbook of Learning and Approximate Dynamic Programming, , Piscataway-NJ: John Wiley & Sons-IEEE Press
dc.descriptionBertsekas, D.P., Tsitsiklis, J.N., (1996) Neuro-dynamic Programming, , Belmont: Athena Scientific
dc.descriptionSutton, R.S., Barto, A.G., (1998) Reinforcement Learning: An Introduction, , Cambridge: MIT Press
dc.descriptionArruda, E.F., Almudevar, A., Do Val, J.B.R., Stability and optimally of a discrete production and storage model with uncertain demand (2004) Proceedings of the 43th IEEE Conference on Decision and Control, pp. 3354-3360. , Nassau
dc.descriptionGordon, G., Stable function approximation in dynamic programming (1995) Proceedings of IMCL'95
dc.descriptionB. III, L.C., Residual algorithms: Reinforcement learning with function approximation (1995) International Conference on Machine Learning, pp. 30-37. , [Online], Available: citeseer.csail.mit.edu/baird95residual.html
dc.descriptionReynolds, S.I., The stability of general discounted reinforcement learning with linear function approximation (2002) Proceedings of the UK Workshop on Computational Intelligence, pp. 139-146. , Birmingham-UK
dc.descriptionWeiring, M.A., Convergence and divergence in standard and averaging reinforcement learning (2004) Proc. 15th European Conf. on Machine Learning, pp. 477-488. , Pisa-Italy
dc.descriptionGolub, G.H., Van Loan, C.F., (1996) Matrix Computations, 3rd Ed., , Baltimore: Johns Hopkins University Press
dc.languageen
dc.publisher
dc.relationIEEE International Conference on Mechatronics and Automation, ICMA 2005
dc.rightsfechado
dc.sourceScopus
dc.titleFunction Approximation For A Production And Storage Problem Under Uncertainty
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución