dc.creatorMelo M.B.
dc.creatorBordin S.
dc.creatorDuarte A.S.S.
dc.creatorOgo S.H.
dc.creatorTorsoni M.A.
dc.creatorSaad S.T.O.
dc.creatorCosta F.F.
dc.date2003
dc.date2015-06-30T17:30:30Z
dc.date2015-11-26T14:09:22Z
dc.date2015-06-30T17:30:30Z
dc.date2015-11-26T14:09:22Z
dc.date.accessioned2018-03-28T21:09:56Z
dc.date.available2018-03-28T21:09:56Z
dc.identifier
dc.identifierComparative Biochemistry And Physiology - B Biochemistry And Molecular Biology. , v. 134, n. 2, p. 389 - 395, 2003.
dc.identifier10964959
dc.identifier10.1016/S1096-4959(02)00289-0
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0037304903&partnerID=40&md5=66bb9d08d5badfe4c91da7d16c3dd42c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102359
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102359
dc.identifier2-s2.0-0037304903
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241220
dc.descriptionIn order to help elucidate the evolution of α-globins, the complete cDNA and amino acid sequences of Geochelone carbonaria and Geochelone denticulata land turtles α-D chains have been described. In G. carbonaria, the cDNA is 539 bp with ATG start codon located at position 46, TGA stop codon at position 469 and AATAAA polyadenylation signal at position 520. In G. denticulata, the cDNA is 536 bp with ATG start codon located at position 46, TGA stop codon at position 469 and AATAAA polyadenylation signal at position 517. Both cDNAs codify 141 amino acid residues, differing from each other in only four amino acid residues. When comparing with human Hb α-chain, alterations in important regions can be noted: α110 Ala-Gly, α114 Pro-Gly, α117 Phe-Tyr and α122 His-Gln. There is a high homology between the amino acids of these turtles when compared with chicken α-D chains, progressively decreasing when compared with human, crocodile, snake, frog and fish α-chains. Phylogenetic analysis of α-D chains shows that those of turtles are closer to those of birds than to snakes and lizards. © 2002 Elsevier Science Inc. All rights reserved.
dc.description134
dc.description2
dc.description389
dc.description395
dc.descriptionBaldwin, J.M., The structure of human carbonmonoxy haemoglobin at 2.7 A resolution (1980) J. Mol. Biol., 136, pp. 103-128
dc.descriptionBordin, S., Meza, N.A., Saad, S.T.O., Ogo, S.H., Costa, F.F., CDNA-derived amino-acid sequence of a land turtle (Geochelone carbonaria) β-chain hemoglobin (1997) Biochem. Mol. Biol. Int., 42, pp. 255-260
dc.descriptionBunn, H.F., Forget, B.G., Hemoglobin structure (1986) Hemoglobin: Molecular, Genetic and Clinical Aspects, pp. 13-35. , Philadelphia, PA: W.B. Saunders Company
dc.descriptionFushitani, K., Higashiyama, K., Moriyama, E.M., Imai, K., Hosokawa, K., The amino acid sequences of two α chains of hemoglobins from Komodo dragon Varanus komodoensis and phylogenetic relationships of amniotes (1996) Mol. Biol. Evol., 13, pp. 1039-1043
dc.descriptionGorr, T.A., Mable, B.K., Kleinschmidt, T., Phylogenetic analysis of reptilian hemoglobins: Trees, rates, and divergences (1998) J. Mol. Evol., 47, pp. 471-485
dc.descriptionHashimoto, M., Ishimori, K., Imai, K., Site-directed mutagenesis in hemoglobin: Functional and structural study of the intersubunit hydrogen bond of threonine-38(C3)alpha at the alpha 1-beta 2 interface in human hemoglobin (1993) Biochemistry, 32, pp. 13688-13695
dc.descriptionKomiyama, N.H., Miyazaki, G., Tame, J., Nagai, K., Transplanting a unique allosteric effect from crocodile into human haemoglobin (1995) Nature, 37, pp. 244-246
dc.descriptionMylvaganam, S.E., Bonaventura, C., Bonaventura, J., Getzoff, E.D., Structural basis for the root effect in haemoglobin (1996) Nature Struct. Biol., 3, pp. 275-283
dc.descriptionPetruzzelli, R., Aureli, G., Lania, A., Galtieri, A., Desideri, A., Giardina, B., Diving behaviour and haemoglobin function: The primary structure of the α- and β-chains of the sea turtle (Caretta caretta) and its functional implications (1996) Biochem. J., 316, pp. 959-965
dc.descriptionRawn, J.D., Amino acids and the primary structure of proteins (1989) Biochemistry, p. 54. , L.P. Daisy, K.C. Hodgin, T.L. O'Quin, S. Olsen, & J.A. Swan. Burlington, NC: Neil Patterson Publishers
dc.descriptionRücknagel, K.P., Reischl, E., Braunitzer, G., Hemoglobins of reptiles. Expression of alpha-D-genes in the turtles, Chrysemys picta bellii and Phrynops hilarii (Testudines) (1984) Hoppe-Seyler's Z. Physiol. Chem., 365, pp. 1163-1171
dc.descriptionRücknagel, K.P., Braunitzer, G., The primary structure of the major and minor hemoglobin component of adult western painted turtle (Chrysemys picta bellii) (1988) Biol. Chem. Hoppe-Seyler, 369, pp. 123-131
dc.descriptionSaitou, N., Nei, M., The neighbor-joining method: A new method for reconstructing phylogenetic trees (1987) Mol. Biol. Evol., 4, pp. 406-425
dc.descriptionShishikura, F., Takami, K., The amino acid sequences of the alpha- and beta-globin chains of hemoglobin from the aldabra giant tortoises, Geochelone gigantea (2001) Zool. Sci., 18, pp. 515-526
dc.descriptionShishikura, F., The primary structure of hemoglobin D from the Aldabra giant tortoise, Geochelone gigantea (2002) Zool. Sci., 19, pp. 197-206
dc.descriptionThompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequences weighting, positions-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res., 22, pp. 4673-4680
dc.descriptionTorsoni, M.A., Ogo, S.H., Oxygenation properties of hemoglobin from the turtle Geochelone carbonaria (1995) Braz. J. Med. Biol. Res., 28, pp. 1129-1131
dc.descriptionTorsoni, M.A., Viana, R.I., Stoppa, G.R., Barros, B.F., Cesquini, M., Ogo, S.H.J., Effect of thiol reagents on functional properties and heme oxidation in the hemoglobin of Geochelone carbonaria (1996) Biochem. Mol. Biol. Int., 40, pp. 355-364
dc.descriptionTorsoni, M.A., Souza-Torsoni, A., Ogo, S.H., Involvement of available SH groups in the heterogeneity of hemoglobin from the tortoise Geochelone carbonaria (1998) Biochem. Mol. Biol. Int., 44, pp. 851-860
dc.descriptionTorsoni, M.A., Ogo, S.H., Hemoglobin-sulfhydryls from tortoise (Geochelone carbonaria) can reduce oxidative damage induced by organic hydroperoxide in erythrocyte membrane (2000) Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 126, pp. 571-577
dc.descriptionZhang, Y., Frohman, M.A., CDNA library protocols (1997) Methods in Molecular Biology, vol. 69, pp. 61-87. , I.G. Cowell, & C.A. Austin. Totowa, NJ: Humana Press Inc
dc.languageen
dc.publisher
dc.relationComparative Biochemistry and Physiology - B Biochemistry and Molecular Biology
dc.rightsfechado
dc.sourceScopus
dc.titleMolecular Characterization Of Hemoglobin α-d Chains From Geochelone Carbonaria And Geochelone Denticulata Land Turtles
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución