dc.creatorChira-Oliva P.
dc.creatorCruz J.C.R.
dc.creatorGarabito G.
dc.creatorHubral P.
dc.creatorTygel M.
dc.date2005
dc.date2015-06-26T14:09:23Z
dc.date2015-11-26T14:09:20Z
dc.date2015-06-26T14:09:23Z
dc.date2015-11-26T14:09:20Z
dc.date.accessioned2018-03-28T21:09:53Z
dc.date.available2018-03-28T21:09:53Z
dc.identifier
dc.identifierRevista Brasileira De Geofisica. , v. 23, n. 1, p. 15 - 25, 2005.
dc.identifier0102261X
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-34147157164&partnerID=40&md5=25d2c2293ee3c5ed45c7472b4234f4a0
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93780
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93780
dc.identifier2-s2.0-34147157164
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241212
dc.descriptionThe land seismic data suffers from effects due to the near surface irregularities and the existence of topography, For obtaining a high resolution seismic image, these effects should be corrected by using seismic processing techniques, e.g. field and residual static corrections. The Common-Reflection- Surface (CRS) stack method is a new processing technique to simulate zero-offset (ZO) seismic sections from multi-coverage seismic data. It is based on a second-order hyperbolic paraxial traveltime approximation referred to a central normal ray. By considering a planar measurement surface, the CRS stacking operator is defined by means of three parameters, namely the emergence angle of the normal ray, the curvature of the normal incidence point (NIP) wave, and the curvature of the normal (N) wave. In this paper the 2-D ZO CRS stack method is modified in order to consider effects due to the smooth topography. By means of this new CRS formalism, we obtain a high resolution ZO seismic section, without applying static corrections. As by-products the 2-D ZO CRS stack method we estimate at each point of the ZO seismic section the three relevant parameters associated to the CRS stack process. © 2005 Sociedade Brasileira de Geofísica.
dc.description23
dc.description1
dc.description15
dc.description25
dc.descriptionBARD, B., (1974) Nonlinear parameter estimation, , Academic Press
dc.descriptionBIRGIN, E., BILOTI, R., TYGEL, M., SANTOS, L.T., Restricted optimization: A clue to a fast and accurate implementation of the common reflection surface stack (1999) Journal of Applied Geophysics, 42, pp. 143-155
dc.descriptionČERVENÝ, V., PSENSIK, I., (1988) Ray tracing program, , Charles University, Czechoslovakia
dc.descriptionCHIRA, P., (2003) Empilhamento pelo método Superfície, , de Reflexão Co
dc.descriptionmum 2-D com topografia e introdução ao caso 3-D, Ph.D. thesis, Federal University of Para, BrazilCHIRA-OLIVA, P., HUBRAL, P., Traveltime formulas of near-zero-offset primary reflections for a curved 2-D measurement surface (2003) Geophysics, 68 (1), pp. 255-261
dc.descriptionCHIRA-OLIVA, P., TYGEL, M., ZHANG, Y., HUBRAL, P., Analytic CRS stack formula for a 2D curved measurement surface and finite-offset reflections (2001) Journal of Seismic Exploration, 10, pp. 245-262
dc.descriptionGARABITO, G., CRUZ, J.C., HUBRAL, P., COSTA, J., Common Reflection Surface Stack: A new parameter search strategy by global optimization, 71th, SEG Mtg (2001) Expanded Abstracts, , San Antonio, Texas,USA
dc.descriptionGILL, P.E., MURRAY, W., WRIGHT, M.H., (1981) Practical optimization, , Academic Press
dc.descriptionGUO, N., FAGIN, S., Becoming effective velocity-model builders and depth imagers, part 2 - the basics of velocity-model building, examples and discussions Multifocusing (2002) The Leading Edge, pp. 1210-1216
dc.descriptionHUBRAL, P., Computing true amplitude reflections in a laterally inhomogeneous earth (1983) Geophysics, 48, pp. 1051-1062
dc.descriptionMANN, J., JÄGER, R., MÜLLER, T., HÖCHT, G., HUBRAL, P., Common-reflection-surface stack - A real data example (1999) Journal of Applied Geophysics, 42, pp. 301-318
dc.descriptionMÜLLER, T., (1999) The common reflection surface stack method - seismic imaging without explicit knowledge of the velocity model, , Ph.D. Thesis, University of Karlsruhe, Germany
dc.descriptionSEN, M., STOFFA, P., (1995) Global optimization methods in geophysical inversion, , Elsevier, Science Publ. Co
dc.descriptionZHANG, Y., HÖCHT, G., HUBRAL, P., 2D and 3D ZO CRS stack for a complex top-surface topography, Expanded (2002) 64th EAGE Conference and Technical Exhibition, , Abstract of the
dc.languageen
dc.publisher
dc.relationRevista Brasileira de Geofisica
dc.rightsaberto
dc.sourceScopus
dc.title2-d Zo Crs Stack By Considering An Acquisition Line With Smooth Topography
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución