dc.creatorPava J.A.
dc.date2003
dc.date2015-06-30T17:30:20Z
dc.date2015-11-26T14:09:07Z
dc.date2015-06-30T17:30:20Z
dc.date2015-11-26T14:09:07Z
dc.date.accessioned2018-03-28T21:09:40Z
dc.date.available2018-03-28T21:09:40Z
dc.identifier
dc.identifierElectronic Journal Of Differential Equations. , v. 2003, n. , p. 1 - 18, 2003.
dc.identifier10726691
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-3042785826&partnerID=40&md5=cbc5c1d28772e1e6aa576080a930b025
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102346
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102346
dc.identifier2-s2.0-3042785826
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241156
dc.descriptionThis work presents new results about the instability of solitary-wave solutions to a generalized fifth-order Korteweg-deVries equation of the form ut + uxxxxx + buxxx = (G(u, ux, uxx))x, where G(q, r, s) = Fq(q, r) - rFqr(q, r) - sFrr (q, r) for some F(q, r) which is homogeneous of degree p + 1 for some p > 1. This model arises, for example, in the mathematical description of phenomena in water waves and magneto-sound propagation in plasma. The existence of a class of solitary-wave solutions is obtained by solving a constrained minimization problem in H2(ℝ) which is based in results obtained by Levandosky. The instability of this class of solitary-wave solutions is determined for b ≠ 0, and it is obtained by making use of the variational characterization of the solitary waves and a modification of the theories of instability established by Shatah & Strauss, Bona & Souganidis & Strauss and Gonçalves Ribeiro. Moreover, our approach shows that the trajectories used to exhibit instability will be uniformly bounded in H2(ℝ).
dc.description2003
dc.description
dc.description1
dc.description18
dc.descriptionAmick, C.J., Toland, J.F., Homoclinic orbits in the dynamic phase-space analogy of an elastic strut (1992) European J. Appl. Math., 3 (2), pp. 97-114
dc.descriptionAngulo, J., On the instability of solitary waves solutions of the generalized Benjamin equation (2003) Advances in Differential Equations, , To appear
dc.descriptionBenjamin, T.B., A new kind of solitary waves (1992) J. Fluid Mechanics, 254, pp. 401-411
dc.descriptionBenjamin, T.B., Solitary and periodic waves of a new kind (1996) Phil. Trans. Roy. Soc. London Ser. A, 354, pp. 1775-1806
dc.descriptionBenney, D.J., A general theory for interactions between short and long waves (1977) Stud. Appl. Math., 56, pp. 81-94
dc.descriptionBona, J.L., Souganidis, P.E., Strauss, W.A., Stability and instability of solitary waves of Korteweg- de Vries type (1987) Proc. Royal. Soc. London Ser. A, 411, pp. 395-412
dc.descriptionBridges, T.J., Derks, G., Linear instability of solitary wave solutions of the Kawahara equation and its generalization (2002) SIAM J. Math. Anal., 33, pp. 1356-1378
dc.descriptionChampneys, A.R., Groves, M.D., A global investigation of solitary-wave solutions to a two-parameter model for water waves (1996) Fluid Mech., 342, pp. 199-229
dc.descriptionCraig, W., Groves, M.D., Hamiltonian long-wave approxiamtions to the water-wave problem (1994) Wave Motion, 19, pp. 367-389
dc.descriptionErdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F., (1954) Tables of Integral Transform, 2. , McGraw-Hill, New York
dc.descriptionGonçalves Ribeiro, J.M., Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field (1992) Ann. Inst. H. Poincaré
dc.descriptionPhys. Théor., 54, pp. 403-433
dc.descriptionGorshkov, K.A., Ostrovsky, L.A., Papko, V.V., Hamiltonian and non-Hamiltonian models for water waves (1984) Lecture Notes in Physics, 195, pp. 273-290. , Springer, Berlin
dc.descriptionGrillakis, M., Shatah, J., Strauss, W., Stability theory of solitary waves in the presence of symmetry I. (1987) J. Funct. Anal., 74, pp. 160-197
dc.descriptionHunter, J., Scheurle, J., Existence of perturbed solitary wave solutions to a model equation for water waves (1988) Physica D, 32, pp. 253-268
dc.descriptionKato, T., Quasilinear equations of evolution, with applications to Partial Differential Equations (1975) Lectures Notes in Math., 448, pp. 25-70
dc.descriptionKawahara, T., Oscillatory solitary waves in dispersive media (1972) J. Phys. Soc. Jpn., 33, pp. 260-264
dc.descriptionKenig, C., Ponce, G., Vega, L., Higher-order nonlinear dispersive equations (1994) Proc. Amer. Math. Soc., 122 (1), pp. 157-166
dc.descriptionKichenassamy, S., Existence of solitary waves for water-wave models (1997) Nonlinearity, 10 (1), pp. 133-151
dc.descriptionKichenassamy, S., Olver, P., Existence and nonexistence of solitary wave solutions to higher-order model evolution equations (1992) SIAM J. Math. Anal., 23, pp. 1141-1166
dc.descriptionLevandosky, S.P., A stability analysis of fifth-order water wave models (1999) Physica D, 125, pp. 222-240
dc.descriptionLions, P.L., The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 (1984) Ann. Inst. H. Poincaré, Anal. Non Linéare, 1, pp. 109-145
dc.descriptionLions, P.L., The concentration-compactness principle in the calculus of variations. The locally compact case, part 2 (1984) Ann. Inst. H. Poincaré, Anal. Non Linéare, 4, pp. 223-283
dc.descriptionMcKenna, P.J., Walter, W., Traveling waves in a suspension bridge (1990) SIAM, J. Appl. Math., 50, pp. 703-715
dc.descriptionOlver, P.J., Hamiltonian and non-Hamiltonian models for water waves (1984) Lecture Notes in Physics, 195, pp. 273-290. , Springer, Berlin
dc.descriptionPonce, G., Lax pairs and higher order models for water waves (1993) J. Differential Equations, 102 (2), pp. 360-381
dc.descriptionSaut, J.C., Quelques généralisations de l'équation de Korteweg-de Vries, II (1979) J. Differential Equations, 33, pp. 320-335
dc.descriptionShatah, J., Strauss, W.A., Instability of nonlinear bound states (1985) Comm. Math. Phys., 100, pp. 173-190
dc.descriptionSouganidis, P.E., Strauss, W.A., Instability of a class of dispersive solitary waves (1990) Proc. Royal. Soc. Eding., 114 A, pp. 195-212
dc.descriptionWeinstein, M., Existence and dynamic stability of solitary wave solutions of equations in long wave propagation (1987) Comm. P.D.E., 12, pp. 1133-1173
dc.descriptionZufiria, J., Symmetric breaking in periodic and solitary gravity-capillary waves on water of finite depth (1987) J. Fluid Mech., 184, pp. 183-206
dc.languageen
dc.publisher
dc.relationElectronic Journal of Differential Equations
dc.rightsaberto
dc.sourceScopus
dc.titleOn The Instability Of Solitary-wave Solutions For Fifth-order Water Wave Models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución