dc.creatorPiga L.
dc.creatorBergamaschi R.A.
dc.creatorRigo S.
dc.date2014
dc.date2015-06-25T17:51:37Z
dc.date2015-11-26T14:09:03Z
dc.date2015-06-25T17:51:37Z
dc.date2015-11-26T14:09:03Z
dc.date.accessioned2018-03-28T21:09:36Z
dc.date.available2018-03-28T21:09:36Z
dc.identifier
dc.identifierCluster Computing. Springer New York Llc, v. 17, n. 4, p. 1279 - 1293, 2014.
dc.identifier13867857
dc.identifier10.1007/s10586-014-0373-0
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84911812005&partnerID=40&md5=fbf910fc9928921642610344d86f3cd0
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86114
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86114
dc.identifier2-s2.0-84911812005
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241142
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionPower-aware computing has emerged as a significant concern in data centers. In this work, we develop empirical models for estimating the power consumed by web servers. These models can be used by on-the-fly power-saving algorithms and are imperative for simulators that evaluate the power behavior of workloads. To apply power saving methodologies and algorithms at the data center level, we must first be able to measure or estimate the power and performance of individual servers running in the data centers. We show a novel method for developing full system web server power models that reduces non-linear relationships among performance measurements and system power and prunes model parameters. The web server power models use as parameters performance indicators read from the machine internal performance counters. We evaluate our approach on an AMD Opteron-based web server and on an Intel i7-based web sever. Our best model displays an average absolute error of 1.92 % for Intel i7 server and 1.46 % for AMD Opteron as compared to actual measurements, and 90th percentile for the absolute percent error equals to 2.66 % for Intel i7 and 2.08 % for AMD Opteron.
dc.description17
dc.description4
dc.description1279
dc.description1293
dc.description2010/05389-5; FAPESP; São Paulo Research Foundation
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionhttp://www.spec.org/web2009, Standard performance evaluation corporation (SPEC). (2009). Accessed 17 March 2009http://www.acpi.info/spec.htm, Advanced Configuration and Power Interface Specification. (2011). Accessed 29 November 2011Barroso, L.A., Holzle, U., The case for energy-proportional computing (2007) IEEE Computer
dc.descriptionBellosa, F., The benefits of event-driven energy accounting in power-sensitive Systems (2000) EW 9: Proceedings of the 9th workshop on ACM SIGOPS European, workshop
dc.descriptionBergamaschi, R.A., Piga, L., Rigo, S., Azevedo, R., Araujo, G., Data center power and performance optimization through global selection of p-states and utilization rates (2012) Sustain Comput Inf Syst, 2 (4), pp. 198-208
dc.descriptionBertran, R., Gonzalez, M., Martorell, X., Navarro, N., Ayguade, E.: Decomposable and responsive power models for multicore processors using performance counters. In ICS ’10: Proceedings of the 24th ACM International Conference on Supercomputing (2010)Bohrer, P., Elnozahy, E.N., Keller, T., Kistler, M., Lefurgy, C., McDowell, C., Rajamony, R., Power aware computing (2002) The case for power management in web servers
dc.descriptionCarrera, E. V., Pinheiro, E., Bianchini, R.: Conserving disk energy in network servers. In ICS ’03: Proceedings of the 17th annual international conference on Supercomputing (2003)Chen, X., Xu, C., Dick, R.P., Mao, Z.M.: Performance and power modeling in a multi-programmed multi-core environment. In: Proceedings of the 47th Design Automation Conference (2010), DAC ’10Cochran, R., Hankendi, C., Coskun, A., Reda, S., Pack & cap: adaptive dvfs and thread packing under power caps (2011) 44th Annual IEEE/ACM International Symposium on Microarchitecture
dc.descriptionContreras, G., Martonosi, M., Power prediction for Intel XScaleprocessors using performance monitoring unit events (2005) ISLPED ’05: Proceedings of the 2005 international symposium on Low power electronics and design
dc.descriptionFan, X., Weber, W.-D., Barroso, L.A., Power provisioning for a warehouse-sized computer (2007) ISCA ’07: Proceedings of the 34th, annual international symposium on Computer architecture
dc.descriptionHall, M.A., (1999) Correlation-based feature selection for machine learning. Ph.D, , Thesis: University of Waikato
dc.descriptionInstruments, N., Bus-Powered M Series Multifunction DAQ for USB - 16-Bit, up to 400 kS/s (2009) up to, 32. , Analog Inputs, Isolation Data Sheet:
dc.description(2013) Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3B: System Programming Guide, Part, 2. , Santa Clara, CA, USA:
dc.descriptionIsci, C., Buyuktosunoglu, A., Cher, C., Bose, P., Martonosi, M., An analysis of efficient multicore global power management policies: Maximizing performance for a given power budget (2006) 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-39, p. 2006
dc.descriptionIsci, C., Martonosi, M., Runtime Power Monitoring in High-End Processors: Methodology and Empirical Data (2003) MICRO 36: Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture
dc.descriptionJoseph, R., Martonosi, M., Run-time power estimation in high performance microprocessors (2001) ISLPED ’01: Proceedings of the 2001 international symposium on Low power electronics and design
dc.descriptionKetchen, D.J., Shook, C.L., The application of cluster analysis in strategic management research: an analysis and critique (1996) Strateg Manag J, 17 (6), pp. 441-458
dc.descriptionLaros, J., Pedretti, K., Kelly, S., Vandyke, J., Ferreira, K., Vaughan, C., Swan, M., Topics on measuring real power usage on high performance computing platforms (2009) CLUSTER ’09. IEEE International Conference on Cluster Computing and Workshops
dc.descriptionLEM Components. Current transducer lts 25-NP data sheet (2008)Lewis, A.W., Tzeng, N.-F., Ghosh, S., Runtime energy consumption estimation for server workloads based on chaotic time-series approximation. ACM Trans (2012) Archit. Code Optim, 9, p. 3
dc.descriptionLinux Kernel Organization. Block layer statistics: Linux Documentation Project (2010)Lloyd, S.P., Least squares quantization in PCM (1982) IEEE Trans Inf Theor, 28, pp. 129-137
dc.descriptionLucer, C.D., Akella, C., Power profiling for embedded applications (2009) White paper
dc.descriptionPiga, L., Bergamaschi, R., Azevedo, R., Rigo, S., (2011) Power measuring infrastructure for computing systems, , Institute of Computing, University of Campinas, Tech. rep.:
dc.descriptionRajamani, K., Rawson, F., Ware, M., Hanson, H., Carter, J., Rosedahl, T., Geissler, A., Hua, H., Power-performance management on an IBM POWER7 server (2010) ISLPED ’10: Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design
dc.descriptionRed Hat Inc., Performance counters for linux (2010)Rivoire, S., Ranganathan, P., Kozyrakis, C.A.: comparison of high-level full-system power models (2008) HotPower’08
dc.descriptionRivoire, S.M., (2008) Models and metrics for energy-efficient computer systems. Ph.D, , Thesis: Department of Electrical Engineering of Stanford University
dc.descriptionRotem, E., Naveh, A., Rajwan, D., Ananthakrishnan, A., Weissmann, E., Power management architecture of the 2nd generation intel core microarchitecture, formerly codenamed sandy bridge (2011) Hot Chips, p. 23
dc.descriptionZedlewski, J., Sobti, S., Garg, N., Zheng, F., Krishnamurthy, A., Wang, R., Modeling hard-disk power consumption (2003) FAST ’03: Proceedings of the 2nd USENIX Conference on File and Storage Technologies
dc.languageen
dc.publisherSpringer New York LLC
dc.relationCluster Computing
dc.rightsfechado
dc.sourceScopus
dc.titleEmpirical And Analytical Approaches For Web Server Power Modeling
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución