Artículos de revistas
Reactions Of Gaseous Acylium Ions With 1,3-dienes: Further Evidence For Polar [4 + 2+] Diels-alder Cycloaddition
Registration in:
Journal Of Mass Spectrometry. , v. 38, n. 3, p. 305 - 314, 2003.
10765174
10.1002/jms.442
2-s2.0-0037349208
Author
Lemos A.B.
Sparrapan R.
Eberlin M.N.
Institutions
Abstract
A novel reaction of acylium and thioacylium ions, polar [4 + 2+] Diels-Alder cycloaddition with 1,3-dienes and O-heterodienes, has been systematically investigated in the gas phase (Eberlin MN, Cooks RG. J. Am. Chem. Soc. 1993; 115: 9226). This polar cycloaddition, yet without precedent in solution, likely forms cyclic 2,5-dihydropyrylium ions. Here we report the reactions of gaseous acylium ions [(CH3)2N-C+=O, Ph-C+=O, (CH3)2N-C+=S, CH3-C+=O, CH3CH2-C+=O, and CH2=CH-C+=O] with several 1-oxy-substituted 1,3-dienes of the general formula RO-CH=CH-C(R1)=CH2, which were performed to collect further evidence for cycloaddition. In reactions with 1-methoxy and 1-(trimethylsilyloxy)1,3-butadiene, adducts are formed to a great extent, but upon collision activation they mainly undergo structurally unspecific retro-addition dissociation. In reactions with Danishefsky's diene (trans-1-methoxy-3-(trimethylsilyloxy)-1,3-butadiene), adducts are also formed to great extents, but retro-addition is no longer their major dissociation; the ions dissociate instead mainly to a common fragment, the methoxyacryl cation of m/z 85. This fragment ion is most likely formed with the intermediacy of the acyclic adduct, which isomerizes prior to dissociation by a trimethylsilyl cation shift. Theoretical calculations predict that meta cycloadducts bearing 1-methoxy and 1-trimethylsilyloxy substituents are unstable, undergoing barrierless ring opening induced by the charge-stabilizing effect of the 1-oxy substituents. In contrast, for the reactions with 1-acetoxy-1,3-butadiene, both the experimental results and theoretical calculations point to the formation of intrinsically stable cycloadducts, but the intact cycloadducts are either not observed or observed in low abundances. Both the isomeric ortho and meta cycloadducts are likely formed, but the nascent ions dissociate to great extents owing to excess internal energy. The ortho cycloadducts dissociate by ketene loss; the meta cycloadducts undergo intramolecular proton transfer to the acetoxy group followed by dissociation by acetic acid loss to yield aromatic pyrylium ions. Either or both of these dissociations, ketene and/or acetic acid loss, dominate over the otherwise favored retro-Diels-Alder alternative. The pyrylium ion products therefore constitute compelling evidence for polar [4 + 2+] cycloaddition since their formation can only be rationalized with the intermediacy of cyclic adducts. Copyright © 2003 John Wiley & Sons, Ltd. 38 3 305 314 Boger, D.L., Weinreb, S.N., (1987) Hetero Diels-Alder Methodology in Organic Synthesis, , Wasserman HH (ed.). Academic Press: New York Carruthers, W., (1990) Cycloaddition Reactions in Organic Synthesis, , Pergamon Press: Oxford Tietze, L.F., Kettschau, G., (1997) Top. Curr. Chem., 189, p. 1 Fleming, I., (1998) Pericyclic Reactions, , Wiley: Oxford Machat, R., Schmidt, R.R., (1970) Angew. Chem., Int. Ed. Engl., 9, p. 31 Schmidt, R.R., (1973) Angew. Chem., Int. Ed. Engl., 12, p. 212 Shimizu, H., Araki, N., Muraoka, O., Tanabe, G., (1996) Chem. Commun., p. 2185 Brodbelt, J.S., (1997) Mass Spectrom. Rev., 16, p. 91 Green, M.K., Lebrilla, C.B., (1997) Mass Spectrom. Rev., 16, p. 53 Eberlin, M.N., (1997) Mass Spectrom. Rev., 16, p. 113 Filippi, A., Giardini, A., Piccirillo, S., Speranza, M., (2000) Int. J. Mass Spectrom., 198, p. 137 Gronert, S., (2001) Chem. Rev., 101, p. 329 Nibbering, N.M.M., (2000) Int. J. Mass Spectrom., 200, p. 27 Takashima, K., Riveros, J.M., (1998) Mass Spectrom. Rev., 17, p. 409 Turecek, F., Wolken, J.K., (2001) J. Phys. Chem. A, 105, p. 8740 Moraes, L.A.B., Eberlin, M.N., Laali, K.K., (2001) Organometallics, 20, p. 4863 Petucci, C., Guler, L., Kenttamaa, H.I., (2002) J. Am. Soc. Mass Spectrom., 13, p. 362 Denault, J.W., Wang, F., Cooks, R.G., Gozzo, F.C., Eberlin, M.N., (2000) J. Phys. Chem. A, 104, p. 11290 Gozzo, F.C., Moraes, L.A.B., Eberlin, M.N., Laali, K.K., (2000) J. Am. Chem. Soc., 122, p. 7776 Wincel, H., Fokkens, R.H., Nibbering, N.M.M., (2000) Rapid Commun. Mass Spectrom., 14, p. 135 Luna, A., Amekraz, B., Morizur, J.P., Tortajada, J., Mo, O., Yanez, M., (2000) J. Phys. Chem. A, 104, p. 3132 D'Oca, M.G.M., Moraes, L.A.B., Pilli, R.A., Eberlin, M.N., (2001) J. Org. Chem., 66, p. 3854 Kretzschmar, I., Schroder, D., Schwarz, H., Rue, C., Armentrout, P.B., (2000) J. Phys. Chem. A, 104, p. 5046 O'Hair, R.A.J., (2002) Chem. Commun., p. 20 Gronert, S., Huang, R., (2001) J. Am. Chem. Soc., 123, p. 8606 Grandinetti, F., Pepi, F., Ricci, A., (1996) Chem. Eur. J., 2, p. 495 Moraes, L.A.B., Gozzo, F.C., Eberlin, M.N., Vainiotalo, P., (1997) J. Org. Chem., 62, p. 5096 Creaser, C.S., Williamson, B.L., (1998) Eur. Mass Spectrom., 4, p. 103 Sharifi, M., Einhorn, J., (1999) Int. J. Mass Spectrom., 190-191, p. 253 Grützmacher, H.F., Dohmeier-Fischer, S., (1998) Int. J. Mass Spectrom. Ion. Processes, 179-180, p. 207 Moraes, L.A.B., Eberlin, M.N., (1998) J. Am. Chem. Soc., 120, p. 11136 Reid, G.E., Tichy, S.E., Pérez, J., O'Hair, R.A.J., Simpson, R.J., Kenttämaa, H.I., (2001) J. Am. Chem. Soc., 123, p. 1184 Meurer, E.C., Moraes, L.A.B., Eberlin, M.N., (2001) Int. J. Mass Spectrom., 212, p. 445 Moraes, L.A.B., Eberlin, M.N., (2002) J. Mass Spectrom., 37, p. 162 Colorado, A., Barket, D.J., Hurst, J.M., Shepson, J.B., (1998) Anal. Chem., 70, p. 5129 Sparrapan, R., Mendes, M.A., Carvalho, M., Eberlin, M.N., (2000) Chem. Eur. J., 6, p. 321 Eberlin, M.N., Sorrilha, A.E.P.M., Gozzo, F.C., Pimpim, R.S., (1997) J. Am. Chem. Soc., 119, p. 3550 Gevrey, S., Taphanel, M.H., Morizur, J.P., (1998) J. Mass. Spectrom., 33, p. 399 Bouchoux, G., Nguyen, M.T., Salpin, J.Y., (2000) J. Phys. Chem., 104, p. 5778 Augusti, R., Gozzo, F.C., Moraes, L.A.B., Sparrapan, R., Eberlin, M.N., (1998) J. Org. Chem., 63, p. 4889 Meurer, E.C., Eberlin, M.N., (2001) Int. J. Mass Spectrom., 210 (211), p. 469 Holman, R.W., Rozeboom, M.D., Gross, M.L., (1986) Tetrahedron, 42, p. 6235 Heinrich, N., Koch, W., Morrow, J.C., Schwarz, H., (1988) J. Am. Chem. Soc., 110, p. 6332 Eberlin, M.N., Cooks, R.G., (1993) J. Am. Chem. Soc., 115, p. 9226 Eberlin, M.N., Majumdar, T.K., Cooks, R.G., (1992) J. Am. Chem. Soc., 114, p. 2884 Carvalho, M.C., Juliano, V.F., Kascheres, C., Eberlin, M.N., (1997) J. Chem. Soc., Perkin Trans. 2, p. 2347 Turecek, F., Hanus, V., (1984) Mass Spectrom. Rev., 3, p. 85 Meurer, E.C., Eberlin, M.N., (2002) J. Mass Spectrom., 37, p. 146 Juliano, V.F., Kascheres, C., Gozzo, F.C., Eberlin, M.N., Lago, C.L., (1996) Anal. Chem., 68, p. 1328 Tiernan, T.O., Futrell, J.H., (1968) J. Phys. Chem., 72, p. 3080 Moraes, L.A.B., Eberlin, M.N., (2001) J. Am. Soc. Mass Spectrom., 12, p. 150 Fleming, I., (1976) Frontier Orbitals and Organic Chemical Reactions, , Wiley: New York Moraes, L.A.B., Eberlin, M.N., (1997) J. Chem. Soc., Perkin Trans. 2, p. 2105