dc.creatorDe Rebelo M.S.
dc.creatorFuruie S.S.
dc.creatorGutierrez M.A.
dc.creatorMoura L.
dc.date2005
dc.date2015-06-26T14:09:04Z
dc.date2015-11-26T14:08:38Z
dc.date2015-06-26T14:09:04Z
dc.date2015-11-26T14:08:38Z
dc.date.accessioned2018-03-28T21:09:12Z
dc.date.available2018-03-28T21:09:12Z
dc.identifier
dc.identifierProgress In Biomedical Optics And Imaging - Proceedings Of Spie. , v. 5748, n. , p. 501 - 509, 2005.
dc.identifier16057422
dc.identifier10.1117/12.595467
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-23844497859&partnerID=40&md5=13f530d7735506d79a1114ead4412cd7
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93700
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93700
dc.identifier2-s2.0-23844497859
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1241049
dc.descriptionA software tool for automatic identification in medical images should allow the identification of anatomical structures ^ and the presence of abnormalities in these structures, such as malformations and tumors. The automation of these tasks would help to decrease the time required for decision making in routine diagnosis and surgical planning. We have addressed the problem of identification of medical structures using a multiscale approach, the scale space, combined with a matching procedure that uses a priori information. The method can be divided in three steps: 1) construction of the linear scale space; 2) application of a feature detector that leads to a multiscale representation based on them; and 3) matching the elements present in the structure built in step 2 with a known pattern that describes the structure under study. We have built an application that uses geometrical information on the desired feature and its relations with other features present in the scene. Results have shown the method's ability to identify medical structures at several levels of resolution and noise. The method allows the generation of specific patterns to be matched by the target-structure with different diseases from a medical database. It can also be used as part of a content based image retrieval system.
dc.description5748
dc.description
dc.description501
dc.description509
dc.descriptionRuggeri, A., Pajaro, S., Automatic recognition of cell layers in corneal confocal microscopy images (2002) Computer Methods and Programs in Biomedicine, 68, pp. 25-35
dc.descriptionBartolini, F., Carfagni, M., Governi, L., Model-based extraction of femoral medulla ducts from radiographic images (2004) Image and Vision Computing, 22, pp. 173-182
dc.descriptionZrimec, T., Sammut, C., A medical image-understanding system (1997) Engineering Applications of Artificial Intelligence, 10 (1), pp. 31-39
dc.descriptionKobashi, M., Shapiro, L.G., Knowledge-based organ identification from CT images (1995) Pattern Recognition, 27 (4), pp. 475-491
dc.descriptionVerma, B., Zakos, J., A computer-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques (2001) IEEE Transactions on Information Technology in Biomedicine, 5 (1), pp. 46-54. , march
dc.descriptionOgiela, M., Tadeusiewicz, R., Syntactic pattern recognition for X-ray diagnosis of pancreatic cancer (2000) IEEE Engineering in Medicine and Biology, 19 (6), pp. 94-105. , november
dc.descriptionCheng, H.D., Cai, X., Chen, X., Hu, L., Lou, X., Computer-aided detection and classification of microcalcifications in mammograms: A survey (2003) Pattern Recognition, 36, pp. 2967-2991
dc.descriptionGoodenday, L.S., Cios, K.J., Shin, I., Identifying coronary stenosis using na image-recognition neural network (1997) IEEE Engineering in Medicine and Biology, 16 (5), pp. 139-144
dc.descriptionFrangi, A.F., Niessen, W.J., Hoogevee, R.M., Van Walsum, T., Viergever, M.A., Model-based quantitation of 3-D magnetic resonance angiografic images (1999) IEEE Transactions on Medical Imaging, 18 (10), pp. 946-956. , October
dc.descriptionKeserci, B., Yoshida, H., Computerized detection of pulmonary nodules in chest radiographs based on morphological features and wavelet snake model (2002) Medical Image Analysis, 6, pp. 431-447
dc.descriptionFang, B., Hsu, W., Lee, M.L., Tumor cell identification using feature rules (2002) Proceedings of 8th ACM SIGKDD, pp. 495-500. , ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 8th. Edmonton, Alberta, Canada
dc.descriptionVan Ginneken, B., Romeny, B.M.T.H., Viergever, M.A., Computer aided diagnosis in chest radiograpy: A survey (2001) IEEE Transactions on Medical Imaging, 20 (12), pp. 1228-1241. , dezembro
dc.descriptionRivière, D., Mangin, J.F., Papadopoulos-Orfanos, D., Martinez, J.M., Frouin, V., Régis, J., Automatic recognition of cortical sulci of the human brain using a congregation of neural networks (2002) Medical Image Analysis, 6, pp. 77-92
dc.descriptionCocosco, C.A., Zijdenbos, A.P., Evans, A.C., A fully automatic and robust brain MRI tissue classification method (2003) Medical Image Analysis, 7, pp. 513-527
dc.descriptionThies, C., Metzler, V., Lehmann, T., Aach, T., Formal extraction of biomedical objects by subgraph matching in attributed hierarchical region adjacency graphs (2004) Medical Imaging 2004, 5370, pp. 14-19. , San Diego
dc.descriptionDy, J.G., Brodley, C.E., Kak, A., Broderick, L.S., Aisen, A.M., Unsupervised feature selection applied to content-based retrieval of lung images (2003) IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (3), pp. 373-378. , march
dc.descriptionWitkin, A.P., Scale space filtering (1983) 8th IJCAI, pp. 1019-1022
dc.descriptionKoenderink, J.J., The structure of images (1984) Biological Cybernetics, 50, pp. 363-370
dc.descriptionYuille, A.L., Poggio, T.A., Scaling theorems for zero-crossings (1986) IEEE-PAMI, 8, pp. 15-25
dc.descriptionTer Haar Romeny, B.M., Introduction to scale space theory (1996) Tutorial of Fourth International Conference on Visualization in Biomedical Computing
dc.descriptionLindeberg, T., Detecting salient blob-like image structures and their scales with a scale space primal sketch: A method for focus-of attention (1993) Intemational Joumal of Computer Vision, 11 (3), pp. 283-318
dc.descriptionFlorack, L.M.J., Ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M., Scale and the differential structure of images (1992) Image and Vision Computing, 10 (6), pp. 376-388
dc.descriptionRebelo, M.S., Gutierrez, M.A., Furuie, S.S., Moura, L., Extraction of cardiac structures through the incorporation of a priori knowledge in a multiscale approach (2000) Proceedings of Computers in Cardiology 2000, 27, pp. 611-614
dc.descriptionhttp://www.bme.unc.edu/mirg/mcat/Vincken, K., (1995) Probabilistic Multiscale Image Segmentation by the Hyperstack, , PhD Thesis. University of UtrechtThe Netherlands
dc.languageen
dc.publisher
dc.relationProgress in Biomedical Optics and Imaging - Proceedings of SPIE
dc.rightsfechado
dc.sourceScopus
dc.titleAutomatic Identification Of Medical Structures
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución