dc.creatorBertagnolli C.
dc.creatorda Silva M.G.C.
dc.creatorGuibal E.
dc.date2014
dc.date2015-06-25T17:51:36Z
dc.date2015-11-26T14:08:14Z
dc.date2015-06-25T17:51:36Z
dc.date2015-11-26T14:08:14Z
dc.date.accessioned2018-03-28T21:08:48Z
dc.date.available2018-03-28T21:08:48Z
dc.identifier
dc.identifierChemical Engineering Journal. , v. 237, n. , p. 362 - 371, 2014.
dc.identifier13858947
dc.identifier10.1016/j.cej.2013.10.024
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84887341705&partnerID=40&md5=db12a0abbec45d455c65c670f64e3aa5
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86106
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86106
dc.identifier2-s2.0-84887341705
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1240953
dc.descriptionThe Brazilian brown seaweed Sargassum filipendula was treated for alginate extraction and the residue was used for removing Cr(VI) and Cr(III) from aqueous solutions. The seaweed was characterized in terms of alginate and residue yields. Alginate and residue contents were 17% and 39%, respectively. Kinetic experiments were carried out and different models were applied in order to elucidate the rate-controlling mechanism: pseudo-first order, pseudo-second order and intra-particle diffusion. The biosorption of Cr(VI) in residue is followed by the reduction of hexavalent to trivalent chromium. The application of Langmuir model to equilibrium data showed a superior maximum biosorption capacity (qmax) for total chromium (0.819mmolg-1) in comparison to trivalent chromium (0.635mmolg-1). The biosorption capacities obtained were close to the values found for the removal of chromium by different species of brown seaweeds. © 2013 Elsevier B.V.
dc.description237
dc.description
dc.description362
dc.description371
dc.descriptionRichard, F.C., Bourg, A.C.M., Aqueous geochemistry of chromium: a review (1991) Water Res., 25, pp. 807-816
dc.descriptionSuwalsky, M., Castro, R., Villena, F., Sotomayor, C.P., Cr(III) exerts stronger structural effects than Cr(VI) on the human erythrocyte membrane and molecular models (2008) J. Inorg. Biochem., 102, pp. 842-849
dc.descriptionKrishnani, K.K., Ayyappan, S., Heavy metals remediation of water using plants and lignocellulosic agrowastes (2006) Rev. Environ. Contam. Toxicol., 188, pp. 59-84
dc.descriptionIARC, Monographs on the evaluation of carcinogenic risks to humans: overall evaluation of carcinogenicity (1987) An updating of IARC Monographs., France
dc.descriptionCieslak-Golonka, M., Toxic and mutagenic effects of chromium(VI). A review (1995) Polyhedron, 15, pp. 3667-3689
dc.descriptionWHO, Guidelines for drinking-water quality Recommendations (2004)Mohan, D., Pittman, C.U., Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water (2006) J. Hazard. Mater., 137, pp. 762-811
dc.descriptionParga, J.R., Cocke, D.L., Valverde, V., Gomes, J.A.G., Kesmez, M., Moreno, H., Characterization of electrocoagulation for removal of chromium and arsenic (2005) Chem. Eng. Technol., 28, pp. 605-612
dc.descriptionMatis, K.A., Mavros, P., Recovery of metals by ion flotation from dilute aqueous solutions (1991) Sep. Purif. Rev., 20, pp. 1-48
dc.descriptionKozlowski, C.A., Walkowiak, W., Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes (2002) Water Res., 36, pp. 4870-4876
dc.descriptionRengaraj, S., Joo, C.K., Kim, Y., Yi, J., Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H (2003) J. Hazard. Mater., 102, pp. 257-275
dc.descriptionMiretzky, P., Cirelli, A.F., Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review (2010) J. Hazard. Mater., 180, pp. 1-19
dc.descriptionKratochvil, D., Pimentel, P., Volesky, B., Removal of trivalent and hexavalent chromium by seaweed biosorbent (1998) Environ. Sci. Technol., 32, pp. 2693-2698
dc.descriptionYang, L., Chen, J.P., Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp (2008) Bioresour. Technol., 99, pp. 297-307
dc.descriptionMurphy, V., Hughes, H., McLoughlin, P., Comparative study of chromium biosorption by red, green and brown seaweed biomass (2008) Chemosphere, 70, pp. 1128-1134
dc.descriptionBermúdez, Y.G., Rico, I.L.R., Guibal, E., de Hoces, M.C., Martín-Lara, M.A., Biosorption of hexavalent chromium from aqueous solution by Sargassum muticum brown alga. Application of statistical design for process optimization (2012) Chem. Eng. J., 183, pp. 68-76
dc.descriptionVolesky, B., Biosorption of heavy metals, Boston (1990)Sharma, A., Gupta, M.N., Three phase partitioning of carbohydrate polymers : separation and purification of alginates (2002) Carbohydr. Polym., 48, pp. 391-395
dc.descriptionNestle, N., Kimmich, R., Heavy metal uptake of alginate gels studied by NMR microscopy (1996) Colloids Surfaces A Physicochem. Eng. Asp., 115, pp. 141-147
dc.descriptionVeglio, F., Esposito, A., Reverberi, A.P., Copper adsorption on calcium alginate beads: equilibrium pH-related models (2002) Hydrometallurgy, 65, pp. 43-57
dc.descriptionPapageorgiou, S.K., Katsaros, F.K., Kouvelos, E.P., Nolan, J.W., Le Deit, H., Kanellopoulos, N.K., Heavy metal sorption by calcium alginate beads from Laminaria digitata (2006) J. Hazard. Mater., 137, pp. 1765-1772
dc.descriptionDavis, T.A., Volesky, B., Mucci, A., A review of the biochemistry of heavy metal biosorption by brown algae (2003) Water Res., 37, pp. 4311-4330
dc.descriptionSchenkman, R.P.F., Hypnea musciformis (Rhodophyta): ecological influence on growth (1989) J. Phycol., 25, pp. 192-196
dc.descriptionRocha, S.C.S., Cavalcante, J.D.A., Silva, M.G.C., Pinho, C.G., Influence of the drying conditions of Sargassum sp. alga on the bioadsorption of hexavalent chromium (2006) Environ. Technol., 27, pp. 979-990
dc.descriptionMchugh, D.J., (1987), Production, properties and uses of alginates, ItalyGomez, C.G., Lambrecht, M.V.P., Lozano, J.E., Rinaudo, M., Villar, M.A., Influence of the extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera) (2009) Int. J. Biol. Macromol., 44, pp. 365-371
dc.descriptionFigueira, M.M., Volesky, B., Ciminelli, V.S.T., Roddick, F.A., Biosorption of metals in brown seaweed biomass (2000) Water Res., 34, pp. 196-204
dc.descriptionMatheickal, J.T., Yu, Q., Biosorption of lead(II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae (1999) Bioresour. Technol., 69, pp. 223-229
dc.descriptionChen, J.P., Yang, L., Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption (2005) Ind. Eng. Chem. Res., 44, pp. 9931-9942
dc.description(2007), ASTM D1687-02, Standard Test Methods for Chromium in WaterLagergren, S., Zur theorie der sogenannten adsorption gelöster stoffe (1898) K. Sven. Vetenskapsakademiens Handl., 24, pp. 1-39
dc.descriptionHo, Y., McKay, G., Pseudo-second order model for sorption processes (1999) Process Biochem., 34, pp. 451-465
dc.descriptionWeber, W.J., Morris, J.C., (1962), Advances in Water Pollution Research, New YorkBosinco, S., Guibal, E., Roussy, J., le Cloirec, P., Adsorption of hexavalent Chromium on Chitosan beads: sorption isotherms and kinetics (1998) Miner. Process. Extr. Metall. Rev., 19, pp. 277-291
dc.descriptionPercival, E.G.V., Mcdowell, R.H., (1967), Chemistry and Enzymology of Marine Algal Polysaccharides, LondonPerez, R., Kaas, R., Campello, F., Arbault, S., Barbaroux, O., (1992) La culture des algues marines dans le monde, , Institut français de recherché pour l'exploitation de la mer, France
dc.descriptionKleinübing, S.J., Vieira, R.S., Beppu, M.M., Guibal, E., da Silva, M.G.C., Characterization and evaluation of copper and nickel biosorption on acidic algae Sargassum filipendula (2010) Mater. Res., 13, pp. 541-550
dc.descriptionSheng, P.X., Ting, Y.-P., Chen, J.P., Hong, L., Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms (2004) J. Colloid Interface Sci., 275, pp. 131-141
dc.descriptionFourest, E., Volesky, B., Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans (1996) Environ. Sci. Technol., 30, pp. 277-282
dc.descriptionColuthup, N.B., Daly, L.H., Wiberley, S.E., (1975) Introduction to Infrared and Raman Spectroscopy, third, New York
dc.descriptionPark, D., Lim, S.-R., Yun, Y.-S., Park, J.M., Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction (2007) Chemosphere, 70, pp. 298-305
dc.descriptionBosinco, S., Roussy, J., Guibal, E., Cloirec, P.L., Interaction mechanisms between hexavalent chromium and corncob (1996) Environ. Technol., 17, pp. 55-62
dc.descriptionMurphy, V., Tofail, S., Hughes, H., McLoughlin, P., A novel study of hexavalent chromium detoxification by selected seaweed species using SEM-EDX and XPS analysis (2009) Chem. Eng. J., 148, pp. 425-433
dc.descriptionDay, R.A., Underwood, A.L., (1974) Quantitative Analysis, , Fourth, New Jersey
dc.descriptionWang, X.S., Li, Z.Z., Sun, C., Removal of Cr(VI) from aqueous solutions by low-cost biosorbents: marine macroalgae and agricultural by-products (2008) J. Hazard. Mater., 153, pp. 1176-1184
dc.descriptionBaral, S.S., Das, N., Roy Chaudhury, G., Das, S.N., A preliminary study on the adsorptive removal of Cr(VI) using seaweed, Hydrilla verticillata (2009) J. Hazard. Mater., 171, pp. 358-369
dc.descriptionMalash, G.F., El-Khaiary, M.I., Piecewise linear regression: a statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models (2010) Chem. Eng. J., 163, pp. 256-263
dc.descriptionCabatingan, L.K., Agapay, R.C., Rakels, J.L.L., Ottens, M., van der Wielen, L., Potential of biosorption for the recovery of chromate in industrial wastewaters (2001) Ind. Eng. Chem. Res., 40, pp. 2302-2309
dc.descriptionAravindhan, R., Madhan, B., Rao, J.R., Nair, B.U., Ramasami, T., Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse (2004) Environ. Sci. Technol., 38, pp. 300-306
dc.descriptionDittert, I.M., Vilar, V.J.P., Da Silva, E.A.B., De Souza, S.M.A.G.U., De Souza, A.A.U., Botelho, C.M.S., Adding value to marine macro-algae Laminaria digitata through its use in the separation and recovery of trivalent chromium ions from aqueous solution (2012) Chem. Eng. J., pp. 348-357
dc.descriptionPlaza Cazón, J., Bernardelli, C., Viera, M., Donati, E., Guibal, E., Zinc and cadmium biosorption by untreated and calcium-treated Macrocystis pyrifera in a batch system (2012) Bioresour. Technol., 116, pp. 195-203
dc.descriptionPrabhakaran, S.K., Vijayaraghavan, K., Balasubramanian, R., Removal of Cr(VI) Ions by spent tea and coffee dusts: reduction to Cr(III) and biosorption (2009) Ind. Eng. Chem. Res., 48, pp. 2113-2117
dc.descriptionÖzer, A., Özer, D., Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats (2003) J. Hazard. Mater., 100, pp. 219-229
dc.descriptionDean, S., Tobin, J.M., Uptake of chromium cations and anions by milled peat, Resour. Conserv. Recycl. (1999), 27, pp. 151-156Gupta, V.K., Gupta, M., Sharma, S., Process development for the removal of lead and chromium from aqueous solutions using red mud an aluminium industry waste (2001) Water Res., 35, pp. 1125-1134
dc.descriptionBernardo, G.-R.R., Rene, R.-M.J., Catalina, A.-D.L.T.M., Chromium (III) uptake by agro-waste biosorbents: chemical characterization, sorption-desorption studies, and mechanism (2009) J. Hazard. Mater., 170, pp. 845-854
dc.descriptionParab, H., Joshi, S., Shenoy, N., Lali, A., Sarma, U.S., Sudersanan, M., Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith (2006) Process Biochem., 41, pp. 609-615
dc.descriptionLi, Y.-S., Liu, C.-C., Chiou, C., Adsorption of Cr(III) from wastewater by wine processing waste sludge (2004) J. Colloid Interface Sci., 273, pp. 95-101
dc.descriptionCui, H., Fu, M., Yu, S., Wang, M.K., Reduction and removal of Cr(VI) from aqueous solutions using modified byproducts of beer production (2011) J. Hazard. Mater., 186, pp. 1625-1631
dc.descriptionSivalingam, P.M., Bio-deposited trace metals and mineral content studies of some tropical marine algae (1978) Bot. Mar., 21, pp. 327-330
dc.descriptionSiegel, B.Z., Siegel, S.M., The chemical composition of algal cell walls (1973) Crit. Rev. Microbiol., 3, pp. 1-26
dc.descriptionLiu, Y., Is the free energy change of adsorption correctly calculated? (2009) J. Chem. Eng. Data, 54, pp. 1981-1985
dc.descriptionRaji, C., Anirudhan, T.S., Batch Cr(VI) removal by polyacrylamide-grafted saw-dust: kinetics and thermodynamics (1998) Water Res., 32, pp. 3772-3780
dc.descriptionMalik, U.R., Hasany, S.M., Subhani, M.S., Sorptive potential of sunflower stem for Cr(III) ions from aqueous solutions and its kinetic and thermodynamic profile (2005) Talanta, 66, pp. 166-173
dc.languageen
dc.publisher
dc.relationChemical Engineering Journal
dc.rightsfechado
dc.sourceScopus
dc.titleChromium Biosorption Using The Residue Of Alginate Extraction From Sargassum Filipendula
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución