dc.creatorCoscione A.R.
dc.creatorMoniz A.C.
dc.creatorPerez D.V.
dc.creatorFerreira M.M.C.
dc.creatorCamargo O.A.
dc.date2005
dc.date2015-06-26T14:08:15Z
dc.date2015-11-26T14:07:58Z
dc.date2015-06-26T14:08:15Z
dc.date2015-11-26T14:07:58Z
dc.date.accessioned2018-03-28T21:08:34Z
dc.date.available2018-03-28T21:08:34Z
dc.identifier
dc.identifierGeoderma. , v. 126, n. 3-4, p. 375 - 388, 2005.
dc.identifier167061
dc.identifier10.1016/j.geoderma.2004.10.005
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-18044368518&partnerID=40&md5=552c94717e2ab8e1347ca7301c0cee09
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93532
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93532
dc.identifier2-s2.0-18044368518
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1240890
dc.descriptionSoil formation factors such as lateral and base water flows promote the Oxisol-Ultisol transformation on hillslopes in colluvium material with oxic properties. Chemical and electrochemical processes occur simultaneously with the morphological transformation of the soil structure from very fine granular to blocky soil. Statistical analysis techniques, such as principal component analysis (PCA) and hierarchical cluster analysis (HCA), were used to analyze the data collected from two sites in the state of São Paulo, Brazil, allowing a comprehensive description of the processes that entailed the transformation of an oxic horizon to a kandic horizon. The modeling power and the discriminating power from the soft independent modeling of class analogy (SIMCA) method were employed to find which attributes were essential to explain the transformation of an oxic into an argillic horizon. The following attributes were used to describe the processes in the toposequences studied: (a) index of silica reactivity (ISR); (b) index of silica saturation (ISS); (c) ratio of iron extracted with ammonium oxalate, DCB and H2SO4; (d) ratio of aluminum extracted with ammonium oxalate, DCB and H2SO 4; (e) specific surface area (SSA); (f) point of zero salt effect (PZSE); and (g) surface net charge (σ). © 2004 Elsevier B.V. All rights reserved.
dc.description126
dc.description3-4
dc.description375
dc.description388
dc.descriptionAnjos, L.H., Fernandes, M.R., Pereira, M.G., Franzmeier, D.P., Landscape and pedogenesis of an Oxisol-Inceptisol-Ultisol sequence in southeastern Brazil (1998) Soil Sci. Soc. Am. J., 62, pp. 1651-1658
dc.descriptionBérubé, Y.G., De Bruyn, P.L., Adsorption at the rutile-solution interface: I. Thermodynamic and experimental study (1968) J. Colloid Interface Sci., 27, pp. 305-318
dc.descriptionBlok, L., De Bruyn, P.L., The ionic double layer at the ZnO/solution interface: III. Comparison of calculated and experimental differential capacities (1970) J. Colloid Interface Sci., 32, pp. 533-538
dc.descriptionBlume, H.P., Schwertmann, U., Genetic evaluation of the profile distribution of aluminum, iron and manganese oxides (1969) Soil Sci. Soc. Am. Proc., 33, pp. 438-444
dc.descriptionCamargo, O.A., Moniz, A.C., Jorge, J.A., Valadares, J.M.A.S., Métodos de análise química, mineralógica e física dos solos usados no Instituto Agronômico (1986) Boletim Técnico, 106. , Instituto Agronômico de Campinas Campinas, Brazil
dc.descriptionCihacek, L.J., Bremner, J.M., A simplified ethylene glycol monoethyl ether procedure for assessment of soil surface area (1979) Soil Sci. Soc. Am. J., 43, pp. 821-822
dc.descriptionCuri, N., Franzmeier, D.P., Toposequence of Oxisols from the Central Plateau of Brazil (1984) Soil Sci. Soc. Am. J., 48 (2), pp. 341-346
dc.descriptionEltantawy, I.M., Arnold, P.W., Reappraisal of ethylene glycol mono-ethyl ether (EGME) method for surface area estimations of clays (1973) J. Soil Sci, 24, pp. 232-238
dc.descriptionEmbrapa, (1997) Manual de Métodos de Análise de Solo, , EMBRAPA-CNPS Rio de Janeiro, Brazil
dc.descriptionFerreira, M.M.C., Multivariate QSAR (2002) J. Braz. Chem. Soc., 13, pp. 742-753
dc.descriptionGallez, A., Herbillon, A.J., Juo, A.S.R., Characteristics of silica sorption and solubility as parameters to evaluate the surface properties of tropical soils: I. The index of silica reactivity (1977) Soil Sci. Soc. Am. J., 41, pp. 1146-1150
dc.descriptionHeilman, M.D., Carter, D.I., Gonzalez, C.L., The ethylene glycol monoethyl ether (EGME) technique for determining soil-surface area (1965) Soil Sci., 100, pp. 409-413
dc.descriptionHendershot, W.H., Lavkulich, L.M., The use of zero point of charge (ZPC) to access pedogenic development (1978) Soil Sci. Soc. Am. J., 42, pp. 468-472
dc.descriptionHerbillon, A.J., Gallez, A., Juo, A.S.R., Characteristics of silica sorption and solubility as parameters to evaluate the surface properties of tropical soils: II. The index of silica saturation (1977) Soil Sci. Soc. Am. J., 41, pp. 1151-1154
dc.descriptionMassart, D.L., Vandeginste, B.G.M., Deming, S.N., Michotte, Y., Kaufman, L., (1988) Chemometrics: A Textbook, , Elsevier Amsterdam
dc.descriptionMoniz, A.C., (1980) Formation of An Oxisol-Ultisol Transition in São Paulo, Brazil, , Ph.D thesis. Department of Soil Science, North Carolina State University at Raleigh
dc.descriptionMoniz, A.C., Buol, S.W., Formation of an Oxisol-Ultisol transition in São Paulo, Brazil: I. Double-water flow model of soil development (1982) Soil Sci. Soc. Am. J., 46, pp. 1228-1233
dc.descriptionMoniz, A.C., Buol, S.W., Weed, S.B., Formation of Oxisol-Ultison transition in São Paulo, Brazil: II. Lateral dynamics of chemical weathering (1982) Soil Sci. Soc. Am. J., 46, pp. 1234-1239
dc.descriptionPérez, D.V., Ramos, D.P., Nascimento, R.A.M., Barreto, W.O., Propriedades eletroquímicas de horizontes B texturais (1993) Rev. Bras. Cienc. Solo, 17, pp. 157-164
dc.descriptionRatner-Zohar, Y., Banin, A., Chen, Y., Oven drying as a pretreatment for surface-area determinations of soils and clays (1983) Soil Sci. Soc. Am. J., 47, pp. 1056-1058
dc.descriptionSakurai, K., Ohdate, Y., Kyuma, K., Comparison of salt titration and potentiometric titration methods for the determination of zero point of charge (ZPC) (1988) Soil Sci. Plant Nutr., 34, pp. 171-182
dc.descriptionSchaefer, C.E.R., Ker, C., Gilkes, R.J., Campos, J.C., Da Costa, L.L., Saadi, A., Pedogenesis on the uplands of the Diamantina Plateau, Minas Gerais, Brazil: A chemical and micropedological study (2002) Geoderma, 107 (3-4), pp. 243-269
dc.descriptionSurvey Staff, S., (1972) Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples. Report No. 1, , U.S. Department of Agriculture United States Government Printing Office Washington, DC
dc.descriptionSurvey Staff, S., Soil taxonomy (1975) A Basic System of Soil Classification for Making and Interpreting Soil Surveys Agriculture Handbook, 436. , U.S. Department of Agriculture, U.S. Government Printing Office Washington, DC
dc.descriptionSurvey Staff, S., (1994) Keys to Soil Taxonomy. Sixth Edition. Natural Resources Conservation Service, , U.S. Department of Agriculture, Government Printing Office Washington, DC
dc.descriptionWold, S., Sjostrom, M., IN: Chemometrics: Theory and Application (1977) ACS Symposium Series, pp. 243-282. , B.R. Kowalski 52 ed. American Chemistry Society Washington, DC
dc.descriptionWold, S., Esbensen, K., Geladi, P., Principal component analysis (1987) Chemom. Intell. Lab. Syst., 2, pp. 37-52
dc.descriptionZaslavsky, D., Rogowski, A.S., Hydraulic and morphologic implications of anisotropy and infiltration in soil profile development (1969) Soil Sci. Soc. Am. Proc., 33, pp. 594-599
dc.languageen
dc.publisher
dc.relationGeoderma
dc.rightsfechado
dc.sourceScopus
dc.titleChemical And Electrochemical Properties Of An Oxisol-ultisol Transition In The State Of São Paulo, Brazil
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución