dc.creatorSilva-Brandao K.L.
dc.creatorLucci Freitas A.V.
dc.creatorBrower A.V.Z.
dc.creatorSolferini V.N.
dc.date2005
dc.date2015-06-26T14:08:14Z
dc.date2015-11-26T14:07:57Z
dc.date2015-06-26T14:08:14Z
dc.date2015-11-26T14:07:57Z
dc.date.accessioned2018-03-28T21:08:33Z
dc.date.available2018-03-28T21:08:33Z
dc.identifier
dc.identifierMolecular Phylogenetics And Evolution. , v. 36, n. 3, p. 468 - 483, 2005.
dc.identifier10557903
dc.identifier10.1016/j.ympev.2005.04.007
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-23444449631&partnerID=40&md5=1de7f2c931c5a000dc7d3fdc099c6e0d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93526
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93526
dc.identifier2-s2.0-23444449631
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1240887
dc.descriptionA phylogeny of the Neotropical members of the Tribe Troidini (Lepidoptera: Papilionidae) was obtained with sequences of three protein-coding genes: two mitochondrial (COI and COII), and one nuclear (EF-1α). Parsimony and Bayesian analyses of 33 taxa resulted in very similar trees regardless of method used with the 27 troidines always forming a monophyletic clade. Within Troidini, the genus Battus is sister group to the remaining troidines, followed by a clade formed by the Paleotropical taxa (here represented by three exemplars). The genus Euryades is the next branch, and sister group of Parides. The genus Parides is monophyletic, and is divided into four main groups by Maximum Parsimony analysis, with the most basal group composed of tailed species restricted to SE Brazil. Character optimization of ecological and morphological traits over the phylogeny proposed for troidines indicated that the use of several species of Aristolochia is ancestral over the use of few or a single host-plant. For the other three characters, the ancestral states were the absence of long tails, forest as the primary habitat and oviposition solitary or in loose group of several eggs. © 2005 Elsevier Inc. All rights reserved.
dc.description36
dc.description3
dc.description468
dc.description483
dc.descriptionArmbruster, W.S., Baldwin, B.G., Switch from specialized to generalized pollination (1998) Nature, 394, p. 623
dc.descriptionAubert, J., Legal, L., Descimon, H., Michel, F., Molecular phylogeny of swallowtail butterflies of the tribe Papilionini (Papilionidae, Lepidoptera) (1999) Mol. Phylogenet. Evol., 12, pp. 156-167
dc.descriptionBaker, R.H., Desalle, R., Multiple sources of character information and the phylogeny of Hawaiian Drosophilids (1997) Syst. Biol., 46, pp. 654-673
dc.descriptionBaker, R.H., Yu, X.B., Desalle, R., Assessing the relative contribution of molecular and morphological characters in simultaneous analysis trees (1998) Mol. Phylogenet. Evol., 9, pp. 427-436
dc.descriptionBernays, E.A., Selective attention and host-plant specialization (1996) Entomol. Exp. Appl., 80, pp. 125-131
dc.descriptionBernays, E.A., Evolution of feeding behavior in insect herbivores-success seen as different ways to eat without being eaten (1998) Bioscience, 48, pp. 35-44
dc.descriptionBoggs Watt, W.B.C.L., Ehrlich, P.R., (2003) Butterflies: Ecology and Evolution Taking Flight, , University of Chicago Press Chicago
dc.descriptionBremer, K., The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction (1988) Evolution, 42, pp. 795-803
dc.descriptionBremer, K., Branch support and tree stability (1994) Cladistics, 10, pp. 295-304
dc.descriptionBrower, A.V.Z., Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera: Nymphalidae) (1994) Mol. Phylogenet. Evol., 3, pp. 159-174
dc.descriptionBrower, A.V.Z., Desalle, R., Vogler, A.P., Gene trees, species trees and systematics: A cladistic perspective (1996) Annu. Rev. Ecol. Syst., 27, pp. 423-450
dc.descriptionBrower, L.P., Brower, J.V.Z., Birds, butterflies, and plant poisons: A study in ecological chemistry (1964) Zoologica, 49, pp. 137-159
dc.descriptionBrown, K.S., Damman, A.J., Feeny, P., Troidine swallowtails (Lepidoptera: Papilionidae) in southeastern Brazil: Natural history and foodplant relationships (1981) J. Res. Lepid., 19, pp. 199-226
dc.descriptionBrown, K.S., Klitzke, C.F., Berlingeri, C., Santos, P.E.R., Neotropical swallowtails: Chemistry of food plant relationships, population ecology, and biosystematics (1995) Swallowtail Butterflies: Their Ecology and Evolutionary Biology, pp. 405-444. , J.M. Scriber Y. Tsubaki R.C. Lederhouse Scientific Publishers Gainesville, FL
dc.descriptionBull, J.J., Huelsenbeck, J.P., Cunningham, C.W., Swofford, D.L., Waddell, P.J., Partitioning and combining data in phylogenetic analysis (1993) Syst. Biol., 42, pp. 384-397
dc.descriptionCaterino, M.S., Cho, S., Sperling, F.A.H., The current state of insect molecular systematics: A thriving Tower of Babel (2000) Annu. Rev. Entomol., 45, pp. 1-54
dc.descriptionCaterino, M.S., Reed, R.D., Kuo, M.M., Sperling, F.A.H., A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera:Papilionidae) (2001) Syst. Biol., 50, pp. 106-127
dc.descriptionCaterino, M.S., Sperling, F.A.H., Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes (1999) Mol. Phylogenet. Evol., 11, pp. 122-137
dc.descriptionCho, S.W., Mitchell, A., Regier, J.C., Mitter, C., Poole, R.W., Friedlander, T.P., Zhao, S.W., A highly conserved nuclear gene for low-level phylogenetics-elongation factor-1-alpha recovers morphology-based tree for Heliothine moths (1995) Mol. Biol. Evol., 12, pp. 650-656
dc.descriptionClary, D.O., Wolstenholme, D.R., The mitochondrial-DNA molecule of Drosophila yakuba-nucleotide-sequence, gene organization, and genetic-code (1985) J. Mol. Evol., 22, pp. 252-271
dc.descriptionColwell, R.K., Futuyma, D.J., On the measurement of niche breadth and overlap (1971) Ecology, 52, pp. 567-576
dc.descriptionDesalle, R., Brower, A.V.Z., Process partitions, congruence and the independence of characters: Inferring relationships among closely-related Hawaiian Drosophila from multiple gene regions (1997) Syst. Biol., 46, pp. 751-764
dc.descriptionDevries, P.J., (1987) The Butterflies of Costa Rica and Their Natural History, , Princeton University Press New Jersey
dc.descriptionDobler, S., Mardulyn, P., Pasteels, J.M., Rowell-Rahier, M., Host-plant switches and the evolution of chemical defense and life history in the leaf beetle genus Oreina (1996) Evolution, 50, pp. 2373-2386
dc.descriptionEhrlich, P.R., Raven, P.H., Butterflies and plants: A study in coevolution (1964) Evolution, 18, pp. 586-608
dc.descriptionFaith, D.P., Cranston, P.S., Could a cladogram this short have arisen by chance alone-on permutation tests for cladistic structure (1991) Cladistics, 7, pp. 1-28
dc.descriptionFarris, J.S., Kallersjo, M., Kluge, A.G., Bult, C., Testing significance of incongruence (1994) Cladistics, 10, pp. 315-319
dc.descriptionFelsenstein, J., Confidence-limits on phylogenies-an approach using the bootstrap (1985) Evolution, 39, pp. 783-791
dc.descriptionFordyce, J.A., Agrawal, A.A., The role of plant trichomes and caterpillar group size on growth and defence of the pipevine swallowtail Battus philenor (2001) J. Anim. Ecol., 70, pp. 997-1005
dc.descriptionFordyce, J.A., Nicce, C.C., Geographic variation in clutch size and a realized benefit of aggregative feeding (2004) Evolution, 58, pp. 447-450
dc.descriptionFox, L.R., Morrow, P.A., Specialization-species property or local phenomenon (1981) Science, 211, pp. 887-893
dc.descriptionFreitas, A.V.L., Brown, K.S., Phylogeny of the Nymphalidae (Lepidoptera) (2004) Syst. Biol., 53, pp. 363-383
dc.descriptionFreitas, A.V.L., Ramos, R.R., Population biology of Parides anchises nephalion (Papilionidae) in a costal site in southeast Brazil (2001) Braz. J. Biol., 61, pp. 623-630
dc.descriptionFutuyma, D.J., Keese, M.C., Scheffer, S.J., Genetic constraints and the phylogeny of insect-plant associations - Responses of Ophraella communa (Coleoptera, Chrysomelidae) to host plants of its congeners (1993) Evolution, 47, pp. 888-905
dc.descriptionFutuyma, D.J., Moreno, G., The evolution of ecological specialization (1988) Annu. Rev. Ecol. Syst., 19, pp. 207-233
dc.descriptionGomez-Zurita, J., Juan, C., Petitpierre, E., The evolutionary history of the genus Timarcha (Coleoptera, Chrysomelidae) inferred from mitochondrial COII gene and partial 16S rDNA sequences (2000) Mol. Phylogenet. Evol., 14, pp. 304-317
dc.descriptionHaase, E., (1892) Untersuchungenüber die Mimikry auf Grundlage Eines Natürlichen Systems der Papilioniden. 2. Untersuchungenüber die Mimikry, , Nägele, Stuttgart
dc.descriptionHancock, D.L., Classification of the Papilionidae: A phylogenetic approach (1983) Smithersia, 2, pp. 1-48
dc.descriptionHarrison, R.G., Animal mitochondrial DNA as a genetic marker in population and evolutionary biology (1989) Trends Ecol. Evol., 4, pp. 6-11
dc.descriptionHaüser, C.L., Jong, R.D., Lamas, G., Robbins, R.K., Smith, C., Vane-Wright, R.I., (2002) Papilionidae - Revised GloBIS/GART Species Checklist (2nd Draft), , http://www.insects-online.de/frames/papilio.htm
dc.descriptionHonda, K., Hayashi, N., Chemical nature of larval osmeterial secretions of papilionid butterflies in the genera Parnassius, Sericinus and Pachliopta (1995) J. Chem. Ecol., 21, pp. 859-867
dc.descriptionHuelsenbeck, J.P., Larget, B., Miller, R.E., Ronquist, F., Potential applications and pitfalls of Bayesian inference of phylogeny (2002) Syst. Biol., 51, pp. 673-688
dc.descriptionHuelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogenetic trees (2001) Bioinformatics, 17, pp. 754-755
dc.descriptionHuelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P., Bayesian inference of phylogeny and its impact on evolutionary biology (2001) Science, 294, pp. 2310-2314
dc.descriptionJaenike, J., Host specialization in phytophagous insects (1990) Annu. Rev. Ecol. Syst., 21, pp. 243-273
dc.descriptionJanz, N., Nyblom, K., Nylin, S., Evolutionary dynamics of host-plant specialization: A case study of the tribe Nymphalini (2001) Evolution, 55, pp. 783-796
dc.descriptionKato, Y., Yagi, T., Biogeography of the subspecies of Parides (Byasa) alcinous (Lepidoptera: Papilionidae) based on a phylogenetic analysis of mitochondrial ND5 sequences (2004) Syst. Entomol., 29, pp. 1-9
dc.descriptionKelley, S.T., Farrell, B.D., Is specialization a dead end? the phylogeny of host use in Dendroctonus bark beetles (Scolytidae) (1998) Evolution, 52, pp. 1731-1743
dc.descriptionKlitzke, C.F., Brown, K.S., The occurrence of aristolochic acids in neotropical troidine swallowtails (Lepidoptera: Papilionidae) (2000) Chemoecology, 10, pp. 99-102
dc.descriptionKondo, K., Shinkawa, T., Molecular systematics of birdwing butterflies (Papilionidae) inferred from mitochondrial ND5 gene (2003) J. Lepid. Soc., 57, pp. 17-24
dc.descriptionKumar, S., Tamura, K., Jakobsen, I.B., Nei, M., MEGA2: Molecular evolutionary genetics analysis software (2001) Bioinformatics, 17, pp. 1244-1245
dc.descriptionLin, C.P., Danforth, B.N., How do insect nuclear and mitochondrial gene substitution patterns differ. Insights from Bayesian analyses of combined datasets (2004) Mol. Phylogenet. Evol., 30, pp. 686-702
dc.descriptionMaddison, W.P., Maddison, D.R., (1999) MacClade: Analysis of Phylogeny and Character Evolution. Version 3.08, , Sinauer Associates, Sunderland, Massachusets
dc.descriptionMiller, J.S., Phylogenetic studies in the Papilioninae (Lepidoptera, Papilionidae) (1987) B. Am. Mus. Nat. Hist., 186, pp. 365-512
dc.description(2003) Anexo à Instrução Normativa n 3, de 27 de Maio de 2003, do Ministério do Meio Ambiente. Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção, , http://www.ibama.gov.br/fauna/downloads/lista%20spp.pdf
dc.descriptionMorais, A.B.B., Brown, K.S., Larval foodplant and other effects on Troidine guild composition (Papilionidae) in Southeastern Brazil (1991) J. Res. Lepid., 30, pp. 19-37
dc.descriptionMoran, N.A., The evolution of host-plant alternation in aphids: Evidence for specialization as a dead end (1988) Am. Nat., 132, pp. 681-706
dc.descriptionMorinaka, S., Maeyma, T., Maekawa, K., Erniwati, Prijono, S.N., Ginarsa, I.K., Nakazawa, T., Hidaka, T., Molecular phylogeny of birdwing butterflies based on the representatives in most genera of the tribe Troidini (Lepidoptera: Papilionidae) (1999) Entomol. Sci., 2, pp. 347-358
dc.descriptionMorinaka, S., Minaka, N., Sekiguchi, M., Erniwati, Prijono, S.N., Ginarsa, I.K., Myiata, T., Hidaka, T., Molecular phylogeny of birdwing butterflies of the tribe Troidini (Lepidoptera: Papilionidae)-using all species of the genus Ornithoptera (2000) Biogeography, 2, pp. 103-111
dc.descriptionMoss, A.M., The Papilios of para (1920) Novit. Zool., 26, pp. 295-319
dc.descriptionMunroe, E., The classification of the Papilionidae (1961) Can. Entomol., 17, pp. 1-51
dc.descriptionMunroe, E., Ehrlich, P.R., Harmonization of concepts of higher classification of the Papilionidae (1960) J. Lepid. Soc., 14, pp. 169-175
dc.descriptionNishida, R., Fukami, H., Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous, to aristolochic acids (1989) J. Chem. Ecol., 15, pp. 2549-2563
dc.descriptionNishida, R., Weintraub, J.D., Feeny, P., Fukami, H., Aristolochic acids from Thottea spp (Aristolochiaceae) and the osmeterial secretions of Thottea-feeding troidine swallowtail larvae (Papilionidae) (1993) J. Chem. Ecol., 19, pp. 1587-1594
dc.descriptionNosil, P., Transition rates between specialization and generalization in phytophagous insects (2002) Evolution, 56, pp. 1701-1706
dc.descriptionNylander, J.A.A., Ronquist, F., Huelsenbeck, J.P., Nieves-Aldrey, J.L., Bayesian phylogenetic analysis of combined data (2004) Syst. Biol., 53, pp. 47-67
dc.descriptionOtero, L.S., Brown, K.S., Biology and ecology of Parides ascanius (Cramer, 1775) (Lep., Papilionidae), a primitive butterfly threatened with extinction (1986) Atala, 10 (12), pp. 2-16
dc.descriptionPapaj, D.R., Interpopulation differences in host preference and the evolution of learning in the butterfly, Battus philenor (1986) Evolution, 40, pp. 518-530
dc.descriptionPasteels, J.M., Rowell-Rahier, M., Proximate and ultimate causes for host plant influence on chemical defense of leaf beetles (Coleoptera, Chrysomelidae) (1991) Entomol. Gen., 15, pp. 227-235
dc.descriptionPosada, D., Crandall, K.A., MODELTEST: Testing the model of DNA substitution (1998) Bioinformatics, 14, pp. 817-818
dc.descriptionRacheli, T., Oliverio, M., Biogeographical patterns of the neotropical genus Battus Scopoli 1777 (Lepidoptera, Papilionidae) (1993) Trop. Zool., 6, pp. 55-65
dc.descriptionRambaut, A., (1996) Se-Al: Sequence Alignment Editor, , http://evolve.zoo.ox.ac.uk
dc.descriptionRausher, M.D., Search image for leaf shape in a butterfly (1978) Science, 200, pp. 1071-1073
dc.descriptionRausher, M.D., Host abundance, juvenile survival, and oviposition preference in Battus philenor (1980) Evolution, 34, pp. 342-355
dc.descriptionRausher, M.D., Odendaal, F.J., Switching and the pattern of host use by Battus philenor butterflies (1987) Ecology, 68, pp. 869-877
dc.descriptionReed, R.D., Sperling, F.A.H., Interaction of process partitions in phylogenetic analysis: An example from the swallowtail butterfly genus Papilio (1999) Mol. Biol. Evol., 16, pp. 286-297
dc.descriptionRodrígues, F., Oliver, J.L., Marín, A., Medina, J.R., The general stochastic model of nucleotide substitution (1990) J. Theor. Biol., 142, pp. 485-501
dc.descriptionRonquist, F., Nylin, S., Process and pattern in the evolution of species associations (1990) Syst. Zool., 39, pp. 323-344
dc.descriptionRothschild, W., Jordan, K., A revision of the American Papilios (1906) Novit. Zool., 13, pp. 411-752
dc.descriptionRothschild, M., Reichstein, T., Von Euw, J., Aplin, R., Harman, R.R.M., Toxic Lepidoptera (1970) Toxicon, 8, pp. 293-299
dc.descriptionScheffer, S.J., Wiegmann, B.M., Molecular phylogenetics of the holly leaf miners (Diptera: Agromyzidae: Phytomyza): Species limits, speciation, and dietary specialization (2000) Mol. Phylogenet. Evol., 17, pp. 244-255
dc.descriptionScriber, J.M., Overview of swallowtail butterflies: Taxonomic and distributional latitude (1995) Swallowtail Butterflies: Their Ecology and Evolutionary Biology, pp. 3-20. , J.M. Scriber Y. Tsubaki R.C. Lederhouse Scientific Publishers Gainesville, FL
dc.descriptionSillen-Tullberg, B., Evolution of gregariousness in aposematic butterfly larvae: A phylogenetic analysis (1988) Evolution, 42, pp. 293-305
dc.descriptionSime, K., Chemical defence of Battus philenor larvae against attack by the parasitoid Trogus pennator (2002) Ecol. Entomol., 27, pp. 337-345
dc.descriptionSime, K.R., Feeny, P.F., Haribal, M.M., Sequestration of aristolochic acids by pipevine swallowtail, Battus philenor (L.): Evidence and ecological implications (2000) Chemoecology, 10, pp. 169-178
dc.descriptionSorensen, M.D., (1999) TreeRot, Version 2, , Boston University, Boston, MA
dc.descriptionSpade, P., Tyler, H., Brown, J.W., The biology of seven Troidine swallowtail butterflies (Papilionidae) in Colima, Mexico (1988) J. Res. Lepid., 26, pp. 13-26
dc.descriptionSperling, F.A.H., Butterfly molecular systematics: From species definitions to higher-level phylogenies (2003) Butterflies: Ecology and Evolution Taking Flight, pp. 431-458. , C.L. Boggs W.B. Watt P.R. Erlich The University of Chicago Press Chicago and London
dc.descriptionStamp, N.E., Physical constraints of defense in response to invertebrate predators by pipevine caterpillars (Battus philenor: Papilionidae) (1986) J. Lepid. Soc., 40, pp. 191-205
dc.descriptionSwofford, D.L., (2002) PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods), , Sinauer Associates, Sunderland, MA
dc.descriptionTyler, H., Brown, K.S., Wilson, K., (1994) Swallowtail Butterflies of the Americas-A Study in Biological Dynamics, Ecological Diversity, Biosystematics, and Conservation, , Scientific Publishers Gainesville, FL
dc.descriptionUrzúa, A., Priestap, H., Aristolochic acids from Battus polydamas (1985) Biochem. Syst. Ecol., 13, pp. 169-170
dc.descriptionVane-Wright, R.I., Evidence and identity in butterfly systematics (2003) Butterflies: Ecology and Evolution Taking Flight, pp. 477-513. , C.L. Boggs W.B. Watt P.R. Erlich The University of Chicago Press Chicago and London
dc.descriptionWahlberg, N., The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae) (2001) Evolution, 55, pp. 522-537
dc.descriptionWahlberg, N., Nylin, S., Morphology versus molecules: Resolution of the positions of Nymphalis, Polygonia, and related genera (Lepidoptera: Nymphalidae) (2003) Cladistics, 19, pp. 213-223
dc.descriptionWahlberg, N., Weingartner, E., Nylin, S., Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea) (2003) Mol. Phylogenet. Evol., 28, pp. 473-484
dc.descriptionWeintraub, J.D., Host plant association patterns and phylogeny in the tribe Troidini (Lepidoptera: Papilionidae) (1995) Swallowtail Butterflies: Their Ecology and Evolutionary Biology, pp. 307-316. , J.M. Scriber Y. Tsubaki R.C. Lederhouse Scientific Publishers Gainesville, FL
dc.descriptionWootton, R.J., Functional morphology of insect wings (1992) Annu. Rev. Entomol., 37, pp. 113-140
dc.descriptionYoder, A.D., Irwin, J.A., Payseur, B.A., Failure of the ILD to determine data combinability for slow loris phylogeny (2001) Syst. Biol., 50, pp. 408-424
dc.descriptionZakharov, E.V., Caterino, M.S., Sperling, F.A.H., Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae) (2004) Syst. Biol., 53, pp. 193-215
dc.languageen
dc.publisher
dc.relationMolecular Phylogenetics and Evolution
dc.rightsfechado
dc.sourceScopus
dc.titlePhylogenetic Relationships Of The New World Troidini Swallowtails (lepidoptera: Papilionidae) Based On Coi, Coii, And Ef-1α Genes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución