Artículos de revistas
Calculation of liquid-liquid equilibrium of aqueous two-phase systems using a chemical-theory-based excess Gibbs energy model
Registro en:
Brazilian Journal of Chemical Engineering. Brazilian Society of Chemical Engineering, v. 21, n. 3, p. 471-478, 2004.
0104-6632
S0104-66322004000300011
10.1590/S0104-66322004000300011
Autor
Pessôa Filho, P. A.
Mohamed, R. S.
Institución
Resumen
Mixtures containing compounds that undergo hydrogen bonding show large deviations from ideal behavior. These deviations can be accounted for through chemical theory, according to which the formation of a hydrogen bond can be treated as a chemical reaction. This chemical equilibrium needs to be taken into account when applying stability criteria and carrying out phase equilibrium calculations. In this work, we illustrate the application of the stability criteria to establish the conditions under which a liquid-phase split may occur and the subsequent calculation of liquid-liquid equilibrium using a chemical-theory-modified Flory-Huggins equation to describe the non ideality of aqueous two-phase systems composed of poly(ethylene glycol) and dextran. The model was found to be able to correlate ternary liquid-liquid diagrams reasonably well by simple adjustment of the polymer-polymer binary interaction parameter. 471 478 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)