dc.creatorNoriler, D.
dc.creatorVegini, A. A.
dc.creatorSoares, C.
dc.creatorBarros, A. A. C.
dc.creatorMeier, H. F.
dc.creatorMori, M.
dc.date2004-01-01
dc.date2014-07-17T17:37:49Z
dc.date2015-11-26T11:45:35Z
dc.date2014-07-17T17:37:49Z
dc.date2015-11-26T11:45:35Z
dc.date.accessioned2018-03-28T20:49:19Z
dc.date.available2018-03-28T20:49:19Z
dc.identifierBrazilian Journal of Chemical Engineering. Brazilian Society of Chemical Engineering, v. 21, n. 1, p. 93-101, 2004.
dc.identifier0104-6632
dc.identifierS0104-66322004000100010
dc.identifier10.1590/S0104-66322004000100010
dc.identifierhttp://dx.doi.org/10.1590/S0104-66322004000100010
dc.identifierhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322004000100010
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/26112
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/26112
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1235894
dc.descriptionIn this work a new mechanical device to improve the gas flow in cyclones by pressure drop reduction is presented and discussed. This behavior occurs due to the effects of introducing swirling breakdown phenomenon at the inlet of the vortex finder tube. The device consists of a tube with two gas inlets in an appositive spiral flux that produces a sudden reduction in the tangential velocity peak responsible for practically 80 % of the pressure drop in cyclones. In turn, peak reduction causes a decrease in pressure drop by a breakdown of the swirling, and because of this the solid particles tend to move faster toward the wall , increasing collection efficiency. As a result of this phenomenon the overall performance of cyclones is improved. Numerical simulations with 3-D, transient, asymmetric and anisotropic turbulence closure by differential Reynolds stress for Lapple and Stairmand standard geometries of 0.3 m in diameter, show a reduction in pressure drop of 20 % and a shift of the tangential velocity peak toward the wall. All numerical experiments were carried out with a commercial CFD code showing numerical stability and good convergence rates with high-order interpolation schemes, SIMPLEC pressure-velocity coupling and other numerical features.
dc.description93
dc.description101
dc.languageen
dc.publisherBrazilian Society of Chemical Engineering
dc.relationBrazilian Journal of Chemical Engineering
dc.rightsaberto
dc.sourceSciELO
dc.subjectcomputational fluid dynamics (CFD)
dc.subjectcyclones
dc.subjectpressure prop and turbulence
dc.titleA new role for reduction in pressure drop in cyclones using computational fluid dynamics techniques
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución