dc.creatorSantos, L. C. dos
dc.creatorAguiar, M. A. M. de
dc.date2005-03-01
dc.date2014-07-17T17:28:03Z
dc.date2015-11-26T11:42:23Z
dc.date2014-07-17T17:28:03Z
dc.date2015-11-26T11:42:23Z
dc.date.accessioned2018-03-28T20:46:04Z
dc.date.available2018-03-28T20:46:04Z
dc.identifierBrazilian Journal of Physics. Sociedade Brasileira de Física, v. 35, n. 1, p. 175-183, 2005.
dc.identifier0103-9733
dc.identifierS0103-97332005000100015
dc.identifier10.1590/S0103-97332005000100015
dc.identifierhttp://dx.doi.org/10.1590/S0103-97332005000100015
dc.identifierhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332005000100015
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/25700
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/25700
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1235040
dc.descriptionThe overcompleteness of the coherent states basis leads to a multiplicity of representations of Feynman's path integral. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. Two such semiclassical formulas were derived in [1] for the two corresponding path integral forms suggested by Klauder and Skagerstan in [2]. Each of these formulas involve trajectories governed by a different classical representation of the Hamiltonian operator: the P representation in one case and the Q representation in other. In this paper we construct a third representation of the path integral whose semiclassical limit involves directly the Weyl representation of the Hamiltonian operator, i.e., the classical Hamiltonian itself.
dc.description175
dc.description183
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherSociedade Brasileira de Física
dc.relationBrazilian Journal of Physics
dc.rightsaberto
dc.sourceSciELO
dc.titleA new form of path integral for the coherent states representation and its semiclassical limit
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución