dc.creatorLa Cruz Puente Alexandra
dc.date2018-01-11T16:47:34Z
dc.date2018-01-11T16:47:34Z
dc.date2014-10-14
dc.dateinfo:eu-repo/date/embargoEnd/2022-01-01 0:00
dc.date.accessioned2018-03-14T20:32:28Z
dc.date.available2018-03-14T20:32:28Z
dc.identifier9781628413625
dc.identifier16057422
dc.identifierhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84923067790&doi=10.1117%2f12.2073826&partnerID=40&md5=e9ee9432fc7ddc69371931e44a30a334
dc.identifierhttp://dspace.ucuenca.edu.ec/handle/123456789/29155
dc.identifier10.1117/12.2073826
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1136057
dc.descriptionSemVisM is a toolbox that combines medical informatics and computer graphics tools for reducing the semantic gap between low-level features and high-level semantic concepts/terms in the images. This paper presents a novel strategy for visualizing medical data annotated semantically combining rendering techniques, and segmentation algorithms. SemVisM comprises two main components: i) AMORE (A Modest vOlume REgister) to handle input data (RAW, DAT or DICOM) and to initially annotate the images using terms defined on medical ontologies (e.g., MesH, FMA or RadLex), and ii) VOLPROB (VOlume PRObability Builder) for generating the annotated volumetric data containing the classified voxels that belong to a particular tissue. SemVisM is built on top of the semantic visualizer ANISE.
dc.descriptionCartagena de Indias
dc.languageen_US
dc.publisherSPIE
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/ec/
dc.sourceinstname:Universidad de Cuenca
dc.sourcereponame:Repositorio Digital de la Universidad de Cuenca
dc.sourceProgress in Biomedical Optics and Imaging - Proceedings of SPIE
dc.subjectMedical Ontologies
dc.subjectSemantic Annotation
dc.subjectSemantic Segmentation
dc.subjectSemantic Visualization
dc.titleSemVisM: Semantic visualizer for medical image
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución