Buscar
Mostrando ítems 1-10 de 250
A RANDOM-FIELD APPROACH TO WEAK-CONVERGENCE OF PROCESSES
(ELSEVIER SCIENCE BV, 1993)
Random fields in J'(R(d+1)) are associated to processes with paths in D([0, 1], J'(R(d))). This embedding provides a way to analyze weak convergence for such processes. The approach is also useful for real valued processes. ...
Ball convergence of a sixth-order Newton-like method based on means under weak conditions
We study the local convergence of a Newton-like method of convergence order six to approximate a locally unique solution of a nonlinear equation. Earlier studies show convergence under hypotheses on the seventh derivative ...
Local Convergence of the Gauss-Newton Method for Infective-Overdetermined Systems
We present, under a weak majorant condition, a local convergence analysis for the Gauss-Newton method for injective-overdetermined systems of equations in a Hilbert space setting. Our results provide under the same information ...
Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods
(2013)
We prove convergence and quasi-optimality of a lowest-order adaptive boundary element method for a weakly-singular integral equation in 2D. The adaptive mesh-refinement is driven by the weighted-residual error estimator. ...
On the convergence of quasi-Newton methods for nonsmooth problems
(Marcel Dekker IncNew York, 1995)
Numerical evidence of nonuniqueness in the evolution of vortex sheets
(Edp Sciences S ALes Ulis Cedex AFrança, 2006)
TWO NEW WEAK CONSTRAINT QUALIFICATIONS AND APPLICATIONS
(Siam PublicationsPhiladelphia, 2012)