Buscar
Mostrando ítems 1-10 de 107
Heuristically accelerated reinforcement learning modularization for multi-agent multi-objective problems
(2014)
This article presents two new algorithms for finding the optimal solution of a Multi-agent Multi-objective Reinforcement Learning problem. Both algorithms make use of the concepts of modularization and acceleration by a ...
Decentralized reinforcement learning of robot behaviors
(Elsevier, 2018)
A multi-agent methodology is proposed for Decentralized Reinforcement Learning (DRL) of individual behaviors in problems where multi-dimensional action spaces are involved. When using this methodology, sub-tasks are learned ...
Aprendizado por reforço profundo multiagente aplicado a negociação de ativos de mercado financeiro
(Centro Universitário FEI, São Bernardo do Campo, 2021)
O presente trabalho tem como motivação principal o estudo de modelos de aprendizado
por reforço multi-agent, comumente utilizados quando o problema é episódico e a dinâmica
do sistema é complexa de ser descrita analiticamente, ...
Heuristically accelerated reinforcement learning modularization for multi-agent multi-objective problems
(2014)
This article presents two new algorithms for finding the optimal solution of a Multi-agent Multi-objective Reinforcement Learning problem. Both algorithms make use of the concepts of modularization and acceleration by a ...
Experience generalization for multi-agent reinforcement learning
(Institute of Electrical and Electronics Engineers (IEEE), Computer Soc, 2001-01-01)
On-line learning methods have been applied successfully in multi-agent systems to achieve coordination among agents. Learning in multi-agent systems implies in a non-stationary scenario perceived by the agents, since the ...
Desenvolvimento de estratégias e fenômenos em dinâmicas de jogos de múltiplos agentes
(2020-11)
Recent developments in Reinforcement Learning (RL) methods are focused on models that can learn good policies in non stationary environments, such as multi-agent games, where agents must learn how to react to changes in ...
Aprendizado por Reforço com Valores deInfluência em Sistemas Multi-Agente
(Universidade Federal do Rio Grande do NorteBRUFRNPrograma de Pós-Graduação em Engenharia ElétricaAutomação e Sistemas; Engenharia de Computação; Telecomunicações, 2009-03-19)
We propose a new paradigm for collective learning in multi-agent systems (MAS) as a solution to the problem in which several agents acting over the same environment must learn how to perform tasks, simultaneously, based ...
(Delta) - radius IVRL: paradigma de integración de aprendizaje por refuerzo en sistemas multi-agente
(Universidad Católica San PabloPE, 2016)
Los sistemas multi-agente han mostrado, por su propia naturaleza, permitir resolver problemas que requieren coordinaci´on y/o cooperaci´on, ello por cuanto permiten representar de forma natural dichas situaciones. Sin ...
Toward real-time decentralized reinforcement learning using finite support basis functions
(Springer Verlag, 2017)
This paper addresses the design and implementation of complex Reinforcement Learning (RL) behaviors where multi-dimensional action spaces are involved, as well as the need to execute the behaviors in real-time using robotic ...
Experience generalization for multi-agent reinforcement learning
(Institute of Electrical and Electronics Engineers (IEEE), Computer Soc, 2014)