Buscar
Mostrando ítems 1-10 de 28
Lower Bound for the First Steklov Eigenvalue.
(2018-07-18)
In this paper we find lower bounds for the first Steklov eigenvalue in Riemannian
n-manifolds, n = 2, 3, with non-positive sectional curvature.
Cota superior para el primer valor propio de Steklov en el espacio Euclídeo
(2015-09-16)
En este artículo se proporciona una cota superior para el primer valor propio del problema de
Steklov en un dominio de Rn. Abstract
In this paper we provide an upper bound for the fi rst eigenvalue of the Steklov problem ...
An optimization problem for nonlinear Steklov eigenvalues with a boundary potential
(Elsevier Inc, 2014-09)
In this paper, we analyze an optimization problem for the first (nonlinear) Steklov eigenvalue plus a boundary potential with respect to the potential function which is assumed to be uniformly bounded and with fixed L1-norm.
Asymptotic behavior of the Steklov eigenvalues for the p-Laplace operator
(De Gruyter, 2007-12)
In this paper we study the asymptotic behavior of the Steklov eigenvalues of the p-Laplacian. We show the existence of lower and upper bounds of a Weyl-type expansion of the function N(λ) which counts the number of eigenvalues ...
Fractional eigenvalue problems that approximate Steklov eigenvalue problems
(Cambridge University Press, 2017-12)
In this paper we analyse possible extensions of the classical Steklov eigenvalue problem to the fractional setting. In particular, we find a non-local eigenvalue problem of fractional type that approximates, when taking a ...
A shape optimization problem for steklov eigenvalues in oscillating domains
(EDP Sciences, 2017-04)
In this paper we study the asymptotic behavior of some optimal design problems related to nonlinear Steklov eigenvalues, under irregular (but diffeomorphic) perturbations of the domain.
The Steklov eigenvalue problem in a cuspidal domain
(Springer, 2020-02)
In this paper we analyze the approximation, by piecewise linear finite elements, of a Steklov eigenvalue problem in a plane domain with an external cusp. This problem is not covered by the literature and its analysis ...