Buscar
Mostrando ítems 1-10 de 47
Some considerations about cohomology of finite groups
(2013)
In this work we present some considerations about cohomology of finite groups. In the first part we use the restriction map in cohomology to obtain some results about subgroups of finite index in a group. In the second ...
The first Hochschild cohomology group of a schurian cluster-tilted algebra
(Springer, 2009-03)
Given a cluster-tilted algebra B we study its first Hochschild cohomology group HH1(B) with coefficients in the B-B-bimodule B. We find several consequences when B is representation-finite, and also in the case where B is ...
The first group (co)homology of a group G with coefficients in some G-modules
(NISC PTY LTD, 2008)
Let G be a group. We give some formulas for the first group homology and cohomology of a group G with coefficients in an arbitrary G-module (Z) over tilde. More explicit calculations are done in the special cases of free ...
Cohomologia de grupos finitos e g-coincidências de aplicações
(Universidade Estadual Paulista (Unesp), 2010-02-26)
O objetivo principal deste trabalho é apresentar em detalhes um estudo sobre dois critérios para G-coincidências de aplicações de um espaço particular X em um CW complexo, onde G é um grupo finito. No primeiro critério G ...
Cohomologia de grupos finitos e g-coincidências de aplicações
(Universidade Estadual Paulista (Unesp), 2010-02-26)
O objetivo principal deste trabalho é apresentar em detalhes um estudo sobre dois critérios para G-coincidências de aplicações de um espaço particular X em um CW complexo, onde G é um grupo finito. No primeiro critério G ...
An application of localization to Galois cohomology.
(2011-10-13)
We use a localization theorem and a characterization of the first group of cohomology [H.sup.1](G, B) to give a new proof that the groups of cohomology [H.sup.i] (G, B) of finite cyclic extensions of number fields have ...
Classification of Quantum Groups via Galois Cohomology
(Springer, 2019-11)
The first example of a quantum group was introduced by P. Kulish and N. Reshetikhin. In the paper Kulish et al. (J Soviet Math 23:2435–2441, 1983), they found a new algebra which was later called Uq(sl(2)). Their example ...
Cohomologia de grupos finitos e g-coincidências de aplicações
(Universidade Estadual Paulista (UNESP), 2014)