Objeto de conferencia
Estimação automática de espessura de gordura subcutânea bovina em imagens ultrassonográficas utilizando Deep Learning
Author
Bragamonte, Jean
Camargo, Sandro
Cardoso Leandro L.
Yokoo, Marcos J.
Cardoso, Fernando F.
Institutions
Abstract
Em um mundo globalizado, com níveis cada vez mais severos de concorrência, a cadeia produtiva de carne bovina tem buscado gerar produtos que às exigências de qualidade do consumidor final. Neste contexto, uma das abordagens utilizada por esta cadeia é a avaliação da qualidade da carcaça com o objetivo de melhorar as características da carne. A utilização de métodos de avaliação da qualidade da carcaça que impliquem o abate do animal é desvantajosa, sendo preferidos os métodos não invasivos aplicados na pré-seleção de animais para o abate.
A técnica da ultrassonografia permite a avaliação das características da carcaça por um procedimento não invasivo e não deixa resíduos nocivos na carne dos animais. Dentre as características de carcaça bovina mensuradas por ultrassom podemos analisar a área de olho de lombo (AOL), a espessura de gordura subcutânea (EG) e a espessura de gordura na garupa ou na picanha (EGP8). Apesar de seus benefícios, há vários anos, têm sido pesquisadas a acurácia das medidas de ultrassom de características de carcaça, tendo sido evidenciada uma grande variabilidade dos resultados, atribuída principalmente aos equipamentos e ao viés da análise do técnico responsável pela atividade.
Neste contexto, o presente trabalho visa desenvolver uma abordagem automatizada, baseada em redes neurais convolucionais, para realizar a estimação da espessura de gordura na garupa ou na picanha (EGP8) a partir de imagens ultrassonográficas. As redes neurais convolucionais têm se mostrado uma técnica muito afetiva em problemas similares. Sociedad Argentina de Informática e Investigación Operativa