Artículos de revistas
Graphene And Carbon Nanotube Nanocomposite For Gene Transfection
Registro en:
Materials Science And Engineering C. , v. 39, n. 1, p. 288 - 298, 2014.
9284931
10.1016/j.msec.2014.03.002
2-s2.0-84897879767
Autor
Hollanda L.M.
Lobo A.O.
Lancellotti M.
Berni E.
Corat E.J.
Zanin H.
Institución
Resumen
Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5 m2/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency. © 2014 Elsevier B.V. 39 1 288 298 Vardharajula, S., Ali, S.Z., Tiwari, P.M., Eroglu, E., Vig, K., Dennis, V.A., Functionalized carbon nanotubes: Biomedical applications (2012) Int. J. Nanomedicine, 7, pp. 5361-5374 Zhou, X., Laroche, F., Lamers, G.E.M., Torraca, V., Voskamp, P., Lu, T., Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos (2012) Nano Res., 5, pp. 703-709 Mastrobattista, E., Van Der Aa, M.A., Hennink, W.E., Crommelin, D.J., Artificial viruses: A nanotechnological approach to gene delivery (2006) Nat. Rev. Drug Discov., 5, pp. 115-121 Lobo, A.O., Corat, M.A.F., Antunes, E.F., Ramos, S.C., Pacheco-Soares, C., Corat, E.J., Cytocompatibility studies of vertically-aligned multi-walled carbon nanotubes: Raw material and functionalized by oxygen plasma (2012) Mater. Sci. Eng. C-Mater., 32, pp. 648-652 Putnam, D., Polymers for gene delivery across length scales (2006) Nat. Mater., 5, pp. 439-451 Ryoo, S.R., Kim, Y.K., Kim, M.H., Min, D.H., Behaviors of NIH-3T3 fibroblasts on graphene and carbon nanotubes: Proliferation, focal adhesion, and gene transfection studies (2010) ACS Nano., 4, pp. 6587-6598 Misra, S.K., Kondaiah, P., Bhattacharya, S., Rao, C.N., Graphene as a nanocarrier for tamoxifen induces apoptosis in transformed cancer cell lines of different origins (2012) Small, 8, pp. 131-143 Harrison, B.S., Atala, A., Carbon nanotube applications for tissue engineering (2007) Biomaterials, 28, pp. 344-353 Kaya, C., Singh, I., Boccaccini, A.R., Multi-walled carbon nanotube-reinforced hydroxyapatite layers on Ti6Al4V medical implants by electrophoretic deposition (EPD) (2008) Adv. Eng. Mater., 10, pp. 131-138 He, S., Song, B., Li, D., Zhu, C., Qi, W., Wen, Y., A Graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis (2010) Adv. Funct. Mater., 20, pp. 453-459 Jang, H., Kim, Y.K., Kwon, H.M., Yeo, W.S., Kim, D.E., Min, D.H., A graphene-based platform for the assay of duplex-DNA unwinding by helicase (2010) Angew. Chem. Intern. Ed., 49, pp. 5703-5707 De La Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., Carbon nanotubes as photoacoustic molecular imaging agents in living mice (2008) Nat. Nanotechnol., 3, pp. 557-562 Liu, Z., Robinson, J.T., Sun, X., Dai, H., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs (2008) J. Am. Chem. Soc., 130, pp. 10876-10877 Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Graphene-based antibacterial paper (2010) ACS Nano., 4, pp. 4317-4323 Park, K.H., Chhowalla, M., Iqbal, Z., Sesti, F., Single-walled carbon nanotubes are a new class of ion channel blockers (2003) J. Biol. Chem., 278, pp. 50212-50216 De Andrade, L.R., Sandin Brito, A., De Souza Melero, A.M.G., Zanin, H., Jose Ceragioli, H., Baranauskas, V., Silva Cunha, K., Pierre Irazusta, S., Absence of mutagenic and recombinagenic activity of multi-walled carbon nanotubes in the Drosophila wing-spot test and Allium cepa test (2014) Ecotoxicol. Environ. Saf., 99, pp. 92-97 Bottini, M., Bruckner, S., Nika, K., Bottini, N., Bellucci, S., Magrini, A., Multi-walled carbon nanotubes induce T lymphocyte apoptosis (2006) Toxicol. Lett., 160, pp. 121-126 Worle-Knirsch, J.M., Pulskamp, K., Krug, H.F., Oops they did it again! Carbon nanotubes hoax scientists in viability assays (2006) Nano Lett., 6, pp. 1261-1268 Casey, A., Davoren, M., Herzog, E., Lyng, F.M., Byrne, H.J., Chambers, G., Probing the interaction of single walled carbon nanotubes within cell culture medium as a precursor to toxicity testing (2007) Carbon, 45, pp. 34-40 Casey, A., Herzog, E., Davoren, M., Lyng, F.M., Byrne, H.J., Chambers, G., Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity (2007) Carbon, 45, pp. 1425-1432 Hurt, R.H., Monthioux, M., Kane, A., Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue (2006) Carbon, 44, pp. 1028-1033 Zanin, H., Peterlevitz, A.C., Ceragioli, H.J., Rodrigues, A.A., Belangero, W.D., Baranauskas, V., Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond (2012) Mater. Sci. Eng. C-Mate. Biol. Appl., 32, pp. 2340-2343 Casey, A., Herzog, E., Davoren, M., Lyng, F.M., Byrne, H.J., Chambers, G., Spectroscopic analysis con.rms the interactions between single-walled carbon nanotubes and various dyes commonly used to assess cytotoxicity (2007) Carbon, 45 (7), pp. 1425-1432 Isobe, H., Tanaka, T., Maeda, R., Noiri, E., Solin, N., Yudasaka, M., Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal free carbon nanotubes aggregates (2006) Angew. Chem. Int. Ed. Engl., 45 (40), pp. 6676-6680 Bhirde, A.A., Patel, S., Sousa, A.A., Patel, V., Molinolo, A.A., Ji, Y.M., Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice (2010) Nanomedicine - Uk., 5, pp. 1535-1546 Foldvari, M., Bagonluri, M., Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues (2008) Nanomed-Nanotechnol., 4, pp. 183-200 Maynard, A.D., Baron, P.A., Foley, M., Shvedova, A.A., Kisin, E.R., Castranova, V., Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material (2004) J. Toxicol. Env. Heal A., 67, pp. 87-107 Tejral, G., Panyala, N.R., Havel, J., Carbon nanotubes: Toxicological impact on human health and environment (2009) J. Appl. Biomed., 7, pp. 1-13 Zhang, Y.B., Xu, Y., Li, Z.G., Chen, T., Lantz, S.M., Howard, P.C., Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells (2011) ACS Nano., 5, pp. 7020-7033 Pacurari, M., Yin, X.J., Zhao, J., Ding, M., Leonard, S.S., Schwegler-Berry, D., Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells (2008) Environ. Health Perspect., 116, pp. 1211-1217 Shvedova, A.A., Pietroiusti, A., Fadeel, B., Kagan, V.E., Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress (2012) Toxicol. Appl. Pharmacol., 261, pp. 121-133 Yuan, J., Gao, H., Sui, J., Duan, H., Chen, W.N., Ching, C.B., Cytotoxicity evaluation of oxidized single-walled carbon nanotubes and graphene oxide on human hepatoma HepG2 cells: An iTRAQ-coupled 2D LC-MS/MS proteome analysis (2012) Toxicol. Sci., 126, pp. 149-161 Yuan, J., Gao, H., Ching, C.B., Comparative protein profile of human hepatoma HepG2 cells treated with graphene and single-walled carbon nanotubes: An iTRAQ-coupled 2D LC-MS/MS proteome analysis (2011) Toxicol. Lett., 207, pp. 213-221 Murray, A.R., Kisin, E., Leonard, S.S., Young, S.H., Kommineni, C., Kagan, V.E., Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes (2009) Toxicology, 257, pp. 161-171 Ding, L., Stilwell, J., Zhang, T., Elboudwarej, O., Jiang, H., Selegue, J.P., Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast (2005) Nano Lett., 5, pp. 2448-2464 Yan, L., Zhao, F., Li, S., Hu, Z., Zhao, Y., Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes (2011) Nanoscale, 3, pp. 362-382 Yan, X.B., Gu, Y.H., Huang, D., Gan, L., Wu, L.X., Huang, L.H., Binding tendency with oligonucleotides and cell toxicity of cetyltrimethyl ammonium bromide-coated single-walled carbon nanotubes (2011) Trans. Nonferrous Met. Soc., 21, pp. 1085-1091 Chan, W.C.W., Elucidating the Interactions of Nanomaterials with Biological Systems (2010) Nemb 2010: Proceedings of the Asme First Global Congress on Nanoengineering for Medicine and Biology - 2010, pp. 111-112 Lam, C.W., James, J.T., McCluskey, R., Hunter, R.L., Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation (2004) Toxicol. Sci., 77, pp. 126-134 Sato, Y., Yokoyama, A., Shibata, K., Akimoto, Y., Ogino, S., Nodasaka, Y., Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-I in vitro and subcutaneous tissue of rats in vivo (2005) Mol. Biosyst., 1, pp. 176-182 Wei, H., Wei, J., Wu, Y., Liu, L., Fan, S., (2013) Jiang K, , High-Strength Composite Yarns Derived From Oxygen Plasma Modified Super-aligned Carbon Nanotube Arrays Nano Res 1-9 Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors (2005) J. Am. Chem. Soc., 127, pp. 4388-4396 Liu, Y., Wu, D.C., Zhang, W.D., Jiang, X., He, C.B., Chung, T.S., Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA (2005) Angew. Chem., 44, pp. 4782-4785 Zangmeister, R.A., Maslar, J.E., Opdahl, A., Tarlov, M.J., Adsorption behavior of DNA-wrapped carbon nanotubes on self-assembled monolayer surfaces (2007) Langmuir, 23, pp. 6252-6256 Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chemistry of carbon nanotubes (2006) Chem. Rev., 106, pp. 1105-1136 Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., McLean, R.S., Lustig, S.R., DNA-assisted dispersion and separation of carbon nanotubes (2003) Nat. Mater., 2, pp. 338-342 Ju, S.Y., Doll, J., Sharma, I., Papadimitrakopoulos, F., Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide (2008) Nat. Nanotechnol., 3, pp. 356-362 Sanchez-Pomales, G., Santiago-Rodriguez, L., Cabrera, C.R., DNA-functionalized carbon nanotubes for biosensing applications (2009) J. Nanosci Nanotechnol., 9, pp. 2175-2188 Ghosh, S., Dutta, S., Gomes, E., Carroll, D., D'Agostino, R., Olson, J., Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes (2009) ACS Nano., 3, pp. 2667-2673 Cheung, W., Pontoriero, F., Taratula, O., Chen, A.M., He, H.X., DNA and carbon nanotubes as medicine (2010) Adv. Drug Deliv. Rev., 62, pp. 633-649 Firme, C.P., Bandaru, P.R., Toxicity issues in the application of carbon nanotubes to biological systems (2010) Nanomed-Nanotechnol., 6, pp. 245-256 Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 14265-14270 Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 2050-2055 Ge, C.C., Du, J.F., Zhao, L.N., Wang, L.M., Liu, Y., Li, D.H., Binding of blood proteins to carbon nanotubes reduces cytotoxicity (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 16968-16973 Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Understanding biophysicochemical interactions at the nano-bio interface (2009) Nat. Mater., 8, pp. 543-557 Shim, M., Kam, N.W.S., Chen, R.J., Li, Y.M., Dai, H.J., Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition (2002) Nano Lett., 2, pp. 285-288 Zhang, L., Zhao, G.C., Wei, X.W., Yang, Z.S., A nitric oxide biosensor based on myoglobin adsorbed on multi-walled carbon nanotubes (2005) Electroanal., 17, pp. 630-634 Feazell, R.P., Nakayama-Ratchford, N., Dai, H., Lippard, S.J., Soluble single-walled carbon nanotubes as longboat delivery systems for Platinum(IV) anticancer drug design (2007) J. Am. Chem. Soc., 129, pp. 8438-8439 Lobo, A.O., Zanin, H., Siqueira, I.A.W.B., Leite, N.C.S., Marciano, F.R., Corat, E.J., (2013) Mater. Sc. Eng. C-Mater. Biol. Appl., 33, pp. 4305-4312 Grinet, M.A.V.M., Zanin, H., Granato, A.E.C., Porcionatto, M., Marciano, F.R., Lobo, A.O., Fast preparation of free-standing nanohydroxyapatite-vertically aligned carbon nanotube scaffolds J. Mater. Chem. B., , http://dx.doi.org/10.1039/C3TB21525C Fletcher, D.A., Mullins, D., Cell mechanics and the cytoskeleton (2010) Nature, 463, pp. 485-492 Machado, C.M., Schenka, A., Vassallo, J., Tamashiro, W.M., Goncalves, E.M., Genari, S.C., Morphological characterization of a human glioma cell line (2005) Cancer Cell Int., 5, p. 13 Izidoro, M.S.J., Varela, J.N., Alves, D.A., Pereira, R.F.C., Brocchi, M., Lancellotti, M., Effects of Salmonella enteritidis serovar typhimurium Infection in Adenocarcinomic human alveolar basal epithelial cells A549 in vitro: Bacteria induce apoptosis in adenocarcinomic cell (2012) J. Bacteriol. Parasitol., p. 3 Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63 Borenfreund, E., Puerner, J.A., A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90) (1985) J. Tissue Cult. Methods, 9, pp. 7-9 Machado, D., Shishido, S.M., Queiroz, K.C., Oliveira, D.N., Faria, A.L., Catharino, R.R., Irradiated riboflavin diminishes the aggressiveness of melanoma in vitro and in vivo (2013) PLoS ONE, 8, p. 54269 Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Verissimo, C., Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation (2006) Carbon, 44, pp. 2202-2211 Zanin, H., May, P.W., Hamanaka, M., Corat, E.J., Field emission from hybrid diamond-like carbon and carbon nanotube composite structures ACS Appl. Mater. Iinterfaces, 5 (23), pp. 12238-12243 Zanin, H., Teofilo, R.F., Peterlevitz, A.C., Oliveira, U., De Paiva, J.C., Ceragioli, H.J., Diamond cylindrical anodes for electrochemical treatment of persistent compounds in aqueous solution (2013) J. Appl. Electrochem., 43, pp. 323-330 Zanin, H., Saito, E., Marciano, F.R., Ceragioli, H.J., Campos Granato, A.E., Porcionatto, M., Lobo, A.O., Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications J (2013) Mater. Chem. B, 1, pp. 4947-4955 Compton, O.C., Jain, B., Dikin, D.A., Abouimrane, A., Amine, K., Nguyen, S.T., Chemically active reduced graphene oxide with tunable c/o ratios (2011) ACS Nano., 5, pp. 4380-4391 Zhanga, Y., Zhaoa, J., Sunb, B., Chena, X., Lia, Q., Qiua, L., Performance enhancement for quasi-solid-state dye-sensitized solar cells by using acid-oxidized carbon nanotube-based gel electrolytes (2012) Electrochim. Acta, 61, pp. 185-190 Zanin, H., Saito, E., Ceragioli, H.J., Baranauskas, V., Corat, E.J., Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices (2014) Mater. Res. Bull., 49, pp. 487-493 Ramalingam, P., Pusuluri, S.T., Periasamy, S., Veerabahu, R., Kulandaivel, J., Role of deoxy group on the high concentration of graphene in surfactant/water media (2013) Rsc Adv., 3, pp. 2369-2378 De Nicola, M., Gattia, D.M., Bellucci, S., De Bellis, G., Micciulla, F., Pastore, R., Effect of different carbon nanotubes on cell viability and proliferation (2007) J. Phys-Condens Mater., p. 19 Mwenifumbo, S., Shaffer, M.S., Stevens, M.M., Exploring cellular behaviour with multi-walled carbon nanotube constructs (2007) J. Mater. Chem., 17, pp. 1894-1902 Kalbacova, M., Kalbac, M., Dunsch, L., Hempel, U., Influence of single-walled carbon nanotube films on metabolic activity and adherence of human osteoblasts (2007) Carbon, 45, pp. 2266-2272 Zhang, D.W., Yi, C.Q., Zhang, J.C., Chen, Y., Yao, X.S., Yang, M.S., The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts (2007) Nanotechnology, p. 18 Macdiarmid, J.A., Mugridge, N.B., Weiss, J.C., Phillips, L., Burn, A.L., Paulin, R.P., Haasdyk, J.E., Brahmbhatt, H., Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics (2007) Cancer Cell, 11 (5), pp. 431-445 Zhang, L., Lu, Z., Zhao, Q., Huang, J., Shen, H., Zhang, Z., Enhanced chemotherapy efficacy by sequential delivery of siRNA and Anticancer drugs using pei-grafted graphene oxide (2011) Small, 7, pp. 460-464 Chang, Y., Yang, S.-T., Liu, J.-H., Dong, E., Wang, Y., Cao, A., Liu, Y., Wang, H., In vitro toxicity evaluation of graphene oxide on A549 cells (2011) Toxicol. Lett., 200, pp. 201-210 Liao, K.-H., Lin, Y.-S., Macosko, C.W., Haynes, C.L., Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts (2011) ACS Appl. Mater. Interfaces, 3, pp. 2607-2615