Artículos de revistas
The Influence Of Cell Dimensions On The Vulnerability Of Ventricular Myocytes To Lethal Injury By High-intensity Electrical Fields [influência Das Dimensões Celulares Sobre A Vulnerabilidade De Miócitos Ventriculares Ao Efeito Letal De Campos Elétricos De Alta Intensidade]
Registro en:
Revista Brasileira De Engenharia Biomedica. , v. 28, n. 4, p. 337 - 345, 2012.
15173151
10.4322/rbeb.2012.040
2-s2.0-84874520571
Autor
Goulart J.T.
de Oliveira P.X.
Bassani J.W.M.
Bassani R.A.
Institución
Resumen
Application of high intensity electric fields (HIEF) to the myocardium is commonly used for cardiac defibrillation/cardioversion. Although effective at reversing life-threatening arrhythmias, HIEF may cause myocyte damage due to membrane electropermeabilization. In this study, the influence of cell length and width on HIEF-induced lethal injury was analyzed in isolated rat cardiomyocytes in parallel alignment with the field. The field-induced maximum variation of membrane potential (ΔVmax) was estimated with the Klee-Plonsey model. The studied myocyte population was arranged in two group pairs for comparison: the longest vs. the shortest cells, and the widest vs. narrowest cells. Threshold field intensity was significantly lower in the longest vs. shortest myocytes, whereas cell width influence was not significant. The threshold ΔVmax was comparable in all groups. Likewise, a significant leftward shift of the lethality curve (i.e., relationship of the probability of lethality vs. field intensity) of the longest cells was observed, evidencing greater sensitivity to HIEF-induced damage. However, the lethality curve as a function of ΔVmax was similar in all groups, confirming a prediction of the Klee-Plonsey model. The similar results for excitation and injury at threshold and HIEF stimulation, respectively, indicate that: a) the effect of cell length on the sensitivity to the field would be attributable to differences in field-induced membrane polarization that lead to excitation or lethal electroporation; b) the Klee-Plonsey model seems to be reliable for analysis of cell interaction with HIEF; c)it is possible that increased cell length in hypertrophied hearts enhances myocyte fragility upon defibrillation/cardioversion. 28 4 337 345 Almquist, A.K., Montgomery, J.V., Haas, T.S., Maron, B.J., Cardioverter-defibrillator implantation in high-risk patients with hypertrophic cardiomyopathy (2005) Heart Rhythm, 2, pp. 814-819. , http://dx.doi.org/10.1016/j.hrthm.2005.05.008, PMID:16051115 Bassani, R.A., Altamirano, J., Puglisi, J.L., Bers, D.M., Action potential duration determines sarcoplasmic reticulum Ca2+ reloading in mammalian ventricular myocytes (2004) Journal of Physiology, 559, pp. 591-607. , http://dx.doi.org/10.1113/jphysiol.2004.067959, PMID:15243136 PMCid:1665117 Bassani, R.A., Lima, K.A., Gomes, P.A.P., Oliveira, P.X., Bassani, J.W.M., Combining stimulus direction and waveform for optimization of threshold stimulation of isolated ventricular myocytes (2006) Physiological Measurement, 27, pp. 851-863. , http://dx.doi.org/10.1088/0967-3334/27/9/008, PMID:16868351 Bender, S.R., Friedman, D.J., Markowitz, S.M., Lerman, B.B., Okin, P.M., Electrocardiographic left ventricular hypertrophy predicts arrhythmia and mortality in patients with ischemic cardiomyopathy (2012) Journal of Interventional Cardiac Electrophysiology, 34, pp. 237-245. , http://dx.doi.org/10.1007/s10840-011-9661-2, PMID:22354775 Brouwer, W.P., van Dijk, S.J., Stienen, G.M.J., van Rossum, A.C., van der Velden, J., Germans, T., The development of familial hypertrophic cardiomyopathy: From mutation to bedside (2011) European Journal of Clinical Investigation, 41, pp. 567-578. , http://dx.doi.org/10.1111/j.1365-2362.2010.02439.x, PMID:21158848 Cheek, E.R., Fast, V.G., Nonlinear changes of transmembrane potential during electrical shocks: Role of membrane electroporation (2004) Circulation Research, 94, pp. 208-214. , http://dx.doi.org/10.1161/01.RES.0000111526.69133.DE, PMID:14670844 Dillon, A.R., Dell'italia, L.J., Tilson, M., Killingsworth, C., Denney, T., Hathcock, J., Botzman, L., Left ventricular remodeling in preclinical experimental mitral regurgitation of dogs (2012) Journal of Veterinary Cardiology, 14, pp. 73-82. , http://dx.doi.org/10.1016/j.jvc.2012.01.012, PMID:22386719 Dosdall, D.J., Fast, D.G., Ideker, R.E., Mechanisms of defibrillation (2010) Annual Review of Biomedical Engineering, 12, pp. 233-258. , http://dx.doi.org/10.1146/annurev-bioeng-070909-105305, PMID:20450352 Fedorov, V.V., Nikolski, V.P., Efimov, I.R., Effect of electroporation on cardiac electrophysiology (2008) Electroporation Protocols: Preclinical and Clinical Gene Medicine, pp. 433-448. , In: Li S, editor, New York: Humana Press Fotuhi, P.C., Epstein, A.E., Ideker, R.E., Energy levels for defibrillation: What is of real clinical importance (1999) American Journal of Cardiology, 83, pp. 24D-33D. , http://dx.doi.org/10.1016/S0002-9149(98)00966-7 Gomes, P.A.P., Bassani, R.A., Bassani, J.W.M., Electric field stimulation of cardiac myocytes during postnatal development (2001) IEEE Transactions On Biomedical Engineering, 48, pp. 630-636. , http://dx.doi.org/10.1109/10.923781, PMID:11396593 Gomes, P.A., de Galvão, K.M., Mateus, E.F., Excitability of isolated hearts from rats during postnatal development (2002) Journal of Cardiovascular Electrophysiology, 13, pp. 355-360. , http://dx.doi.org/10.1046/j.1540-8167.2002.00355.x, PMID:12033352 Kaistura, J., Zhang, X., Liu, Y., Szoke, E., Chen, W., Olivetti, G., Hintze, T.H., Anversa, P., The cellular basis of pacing-induced dilated cardiomyopathy: Myocyte cell loss and myocyte cellular reactive hypertrophy (1995) Circulation, 92, pp. 2306-2317. , http://dx.doi.org/10.1161/01.CIR.92.8.2306, PMID:7554216 Kalighi, K., Daly, B., Leino, E.V., Shorofsky, S.R., Kavesh, N.G., Peters, R.W., Gold, M.R., Clinical predictors of transvenous defibrillator energy requirement (1997) American Journal of Cardiology, 79, pp. 150-153. , http://dx.doi.org/10.1016/S0002-9149(96)00702-3 Klee, M., Plonsey, R., Stimulation of spheroidal cells: The role of cell shape (1976) IEEE Transactions On Biomedical Engineering, 23, pp. 347-354. , http://dx.doi.org/10.1109/TBME.1976.324597, PMID:1278928 Kleinbaum, D.G., (1996) Survival Analysis: A Self-learning Text, , New York: Springer-Verlag Knisley, S.B., Grant, A.O., Asymmetrical electrically induced injury of rabbit ventricular myocytes (1985) Journal of Molecular and Cellular Cardiology, 27, pp. 1111-1122. , http://dx.doi.org/10.1016/0022-2828(95)90047-0 Knisley, S.B., Blitchington, T.F., Hill, B.C., Grant, A.O., Smith, W.M., Pilkington, T.C., Ideker, R., Optical measurements of transmembrane potential changes during electrical field stimulation of ventricular cells (1993) Circulation Research, 72, pp. 255-270. , http://dx.doi.org/10.1161/01.RES.72.2.255, PMID:8418982 Krassowska, W., Filev, P.D., Modeling electroporation in a single cell (2007) Biophysical Journal, 92, pp. 404-417. , http://dx.doi.org/10.1529/biophysj.106.094235, PMID:17056739 PMCid:1751390 Mantel, N., Evaluation of survival data and two new rank order statistics arising in its consideration (1966) Cancer Chemotherapy Reports, 50, pp. 163-170. , PMID:5910392 Neunlist, M., Tung, L., Dose-dependent reduction of cardiac transmembrane potential by high intensity electrical shocks (1997) American Journal of Physiology, 273, pp. H2817-H2825. , PMID:9435619 Oliveira, P.X., Bassani, R.A., Bassani, J.W.M., Cytosolic Ca2+ accumulation in ventricular myocytes after stimulation with high-intensity electric fields (2005) Biophysical Journal, 88 (1 SUPPL.), p. 1. , abstr. 1514 Oliveira, P.X., Bassani, R.A., Bassani, J.W.M., Lethal effect of electric fields on isolated ventricular myocytes (2008) IEEE Transactions On Biomedical Engineering, 55, pp. 2635-2642. , http://dx.doi.org/10.1109/TBME.2008.2001135, PMID:18990634 O'Neill, R.J., Tung, L., Cell-attached patch clamp study of the electropermeabilization of amphibian cardiac cells (1991) Biophysical Journal, 59, pp. 1028-1039. , http://dx.doi.org/10.1016/S0006-3495(91)82318-9 Oshiyama, N.F., Bassani, J.W.M., Bassani, R.A., Configuração do potencial de ação em miócitos ventriculares isolados de ratos neonatos e adultos (2012) Proceedings of the I Simposio Brasileiro De Eletrofisiologia Celular, p. 40. , Belo Horizonte, MG. Belo Horizonte, abstr Ott, P., Reiter, M.J., Effect of ventricular dilatation on defibrillation threshold in the isolated perfused rabbit heart (1997) Journal of Cardiovascular Electrophysiology, 8, pp. 1013-1019. , http://dx.doi.org/10.1111/j.1540-8167.1997.tb00625.x, PMID:9300299 Penna, L.B., Bassani, R.A., Increased spontaneous activity and reduced inotropic response to catecholamines in ventricular myocytes from footshock-stressed rats (2010) Stress, 13, pp. 73-82. , http://dx.doi.org/10.3109/10253890902951778, PMID:19697264 Reinier, K., Dervan, C., Singh, T., Uy-Evanado, A., Lai, S., Gunson, K., Jui, J., Chugh, S.S., Increased left ventricular mass and decreased left ventricular systolic function have independent pathways to ventricular arrhythmogenesis in coronary artery disease (2011) Heart Rhythm, 8, pp. 1177-1182. , http://dx.doi.org/10.1016/j.hrthm.2011.02.037, PMID:21376836 PMCid:3123721 Ricardo, R.A., Oliveira, P.X., Bassani, R.A., Bassani, J.W.M., Compact cell image projector: Application to study the relationship between stimulus interval and contraction amplitude in isolated rat cardiomyocytes (2006) Revista Brasileira De Engenharia Biomédica, 22, pp. 151-160 Sharma, V., Tung, L., Spatial heterogeneity of transmembrane potential responses of single guinea-pig cardiac cells during electric field stimulation (2002) Journal of Physiology, 542, pp. 477-492. , http://dx.doi.org/10.1113/jphysiol.2001.013197, PMID:12122146 PMCid:2290429 Sowell, B., Fast, V.G., Ionic mechanism of shock-induced arrhythmias: Role of intracellular calcium (2012) Heart Rhythm, 9, pp. 96-104. , http://dx.doi.org/10.1016/j.hrthm.2011.08.024, PMID:21878203 Tovar, O., Tung, L., Electroporation and recovery of cardiac cell membrane with rectangular voltage pulses (1992) American Journal of Physiology, 263, pp. H1128-H1136. , PMID:1415761 Tung, L., Sliz, N., Mulligan, M.R., Influence of electrical axis of stimulation on excitation of cardiac muscle cells (1991) Circulation Research, 69, pp. 722-730. , http://dx.doi.org/10.1161/01.RES.69.3.722, PMID:1873867 Valič, B., Golzio, M., Pavlin, M., Schatz, A., Faurie, C., Gabriel, B., Teissié, J., Miklavčič, D., Effect of electric field induced transmembrane potential on spheroidal cells: Theory and experiment (2003) European Biophysical Journal, 32, pp. 510-528 Virgen-Ortiz, A., Marin, J.L., Elizalde, A., Castro, E., Stefani, E., Toro, L., Muñiz, J., Passive mechanical properties of cardiac tissue in heart hypertrophy during pregnancy (2009) Journal of Physiological Science, 59, pp. 391-396. , http://dx.doi.org/10.1007/s12576-009-0047-5, PMID:19565322 Weaver, J.C., Chizmadzhev, Y.A., Theory of electroporation: A review (1996) Bioelectrochemistry and Bioenergetics, 41, pp. 135-160. , http://dx.doi.org/10.1016/S0302-4598(96)05062-3 Yabe, S., Smith, W., Daubert, J., Wolf, P., Rollins, D., Ideker, R., Conduction disturbances caused by high current density electric fields (1990) Circulation Research, 66, pp. 1190-1203. , http://dx.doi.org/10.1161/01.RES.66.5.1190, PMID:2335021 Zipes, D.P., Camm, A.J., Borggrefe, M., Buxton, A.E., Chaitman, B., Fromer, M., Gregoratos, G., Tracy, C., ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden death - executive summary: A report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (2006) European Heart Journal, 27, pp. 2099-2140. , http://dx.doi.org/10.1093/eurheartj/ehl199, PMID:16923744 (Writing Committee do Develop Guidelines for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death