Actas de congresos
Analysis Of Brain White Matter Hyperintensities Using Pattern Recognition Techniques
Registro en:
9780819494436
Progress In Biomedical Optics And Imaging - Proceedings Of Spie. , v. 8669, n. , p. - , 2013.
16057422
10.1117/12.2006924
2-s2.0-84878332224
Autor
Bento M.
Rittner L.
Appenzeller S.
Lapa A.
Lotufo R.
Institución
Resumen
The brain white matter is responsible for the transmission of electrical signals through the central nervous system. Lesions in the brain white matter, called white matter hyperintensity (WMH), can cause a significant functional deficit. WMH are commonly seen in normal aging, but also in a number of neurological and psychiatric disorders. We propose here an automatic method for WHM analysis in order to distinguish regions of interest between normal and non-normal white matter (identification task) and also to distinguish different types of lesions based on their etiology: demyelinating or ischemic (classification task). The method combines texture analysis with the use of classifiers, such as Support Vector Machine (SVM), Nearst Neighboor (1NN), Linear Discriminant Analysis (LDA) and Optimum Path Forest (OPF). Experiments with real brain MRI data showed that the proposed method is suitable to identify and classify the brain lesions. © 2013 SPIE. 8669
The Society of Photo-Optical Instrumentation Engineers (SPIE),Aeroflex Incorporated,CREOL - Univ. Central Florida, Coll. Opt. Photonics,DQE Instruments, Inc.,Medtronic, Inc.,PIXELTEQ, Multispectral Sensing and Imaging Appenzeller, S., Faria, A.V., Li, L., Costallat, L.T., Cendes, F., Quantitative magnetic resonance imaging analyses and clinical significance of hyperintense white matter lesions in systemic lupus erythematosus patients (2008) Annals of Neurology, 64 (6), pp. 635-643 Klöppel, S., Abdulkadir, A., Hadjidemetriou, S., Issleib, S., Frings, L., Thanh, T., Mader, I., Ronneberger, O., A comparison of different automated methods for the detection of white matter lesions in mri data (2011) NeuroImage, 57 (2), pp. 416-422 Anbeek, P., Vincken, K.L., Osch, M.J.P., Bisschops, R.H.C., Grond, J., Probabilistic segmentation of whitematter lesions in mr imaging (2004) NeuroImage, 21 (3), pp. 1037-1044 Wu, M., Rosano, C., Butters, M., Whyte, E., Nable, M., Crooks, R., Meltzer, C.C., Aizenstein, H.J., A fully automated method for quantifying and localizing white matter hyperintensities on mr images (2006) Psychiatry Research, 148 (2-3), pp. 133-142 Zimring, D.G., Achiron, A., Miron, S., Faibel, M., Azhari, H., Automatic detection and characterization of multiple sclerosis lesions in brain mr images (1998) Magnetic Resonance Imaging, 16 (3), pp. 311-318 Haralick, R.M., Shanmugam, K., Dinstein, I., Textural features for image classification (1973) , IEEE Transactions on Systems, Man and Cybernetics, 3 (6), pp. 610-621 Castellano, G., Bonilha, L., Cendes, F., Texture analysis of medical images (2004) Clinical Radiology, 59 (12), pp. 1061-1069 Lerski, R.A., Schad, L., Boyce, D., Blül, S., Zuna, I., Mr image texture analysis: An approach to tissue characterization (1993) Magnetic Resonance Imaging, 11 (6), pp. 873-887 Kruggel, F., Paul, J., Gertz, H., Texture-based segmentation of diffuse lesions of the brain's white matter (2008) Neuroimage, 39 (3), pp. 987-996 Byun, H., Lee, S.W., Applications of support vector machines for pattern recognition: A survey (2002) Proc. First International Workshop on Pattern Recognition with Support Vector Machines, pp. 213-236 Bhatia, N., Survey of nearest neighbor techniques (2010) International Journal of Computer Science and Information Security, 8 (2), pp. 302-305 Webb, A.R., (2002) Statistical Pattern Recognition, pp. 123-163. , John Wiley & Sons, Malvern Cappabianco, F., Falcão, A., Rocha, L., Clustering by optimum path forest and its application to automatic gm/wm classification in mr-t1 images of the brain (2008) Proc. 5th IEEE International Symposium on Biomedical Imaging: from Nano to Macro, pp. 428-431 Lotufo, R., Machado, R., Körbes, A., Ramos, R., Adessowiki: On-line collaborative scientific programming platform (2009) Proc 5th International Symposium on Wikis and Open Collaboration, 10, pp. 1-10. , 6 Schwartz, W.R., Siqueira, F.R., Pedrini, H., Evaluation of feature descriptors for texture classification (2012) Journal of Electronic Imaging, 21 (2), pp. 1-17 Han, J., Kamber, M., (2006) Data Mining: Concepts and Techniques, pp. 291-310. , Elsevier, San Diego & London & San Franscisco Taylor, J.S., Cristianini, N., (2000) Support Vector Machines and other Kernel-based Learning Methods, pp. 93-122. , Cambridge University Press, New Kingdom Papa, J., Falcão, A.X., Suzuki, C.T.N., Supervised pattern classification based on optimum-path forest (2009) International Journal of Imaging Systems and Technology, 19 (2), pp. 120-131 Duda, R.O., Hart, P.E., Stork, D.G., (2001) Pattern Classification, , Wiley, Guelph Ontario Souza, R., Rittner, L., Lotufo, R., A comparison between optimum-path forest and k-nearest neighbors classifier (2012) Proc. XXV SIBGRAPI - Conference on Graphics, Patterns and Images, pp. 260-267 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Duchesnay, E., Scikit-learn: Machine learning in python (2011) Journal of Machine Learning Research, 12 (10), pp. 2825-2830