Artículos de revistas
Transcutaneous Laser Treatment Of Leg Veins
Registro en:
Lasers In Medical Science. Springer-verlag London Ltd, v. 29, n. 2, p. 481 - 492, 2014.
2688921
10.1007/s10103-013-1483-2
2-s2.0-84897036113
Autor
Meesters A.A.
Pitassi L.H.U.
Campos V.
Wolkerstorfer A.
Dierickx C.C.
Institución
Resumen
Leg telangiectasias and reticular veins are a common complaint affecting more than 80 % of the population to some extent. To date, the gold standard remains sclerotherapy for most patients. However, there may be some specific situations, where sclerotherapy is contraindicated such as needle phobia, allergy to certain sclerosing agents, and the presence of vessels smaller than the diameter of a 30-gauge needle (including telangiectatic matting). In these cases, transcutaneous laser therapy is a valuable alternative. Currently, different laser modalities have been proposed for the management of leg veins. The aim of this article is to present an overview of the basic principles of transcutaneous laser therapy of leg veins and to review the existing literature on this subject, including the most recent developments. The 532-nm potassium titanyl phosphate (KTP) laser, the 585-600-nm pulsed dye laser, the 755-nm alexandrite laser, various 800-983-nm diode lasers, and the 1,064-nm neodymium yttrium-aluminum-garnet (Nd:YAG) laser and various intense pulsed light sources have been investigated for this indication. The KTP and pulsed dye laser are an effective treatment option for small vessels (<1 mm). The side effect profile is usually favorable to that of longer wavelength modalities. For larger veins, the use of a longer wavelength is required. According to the scarce evidence available, the Nd:YAG laser produces better clinical results than the alexandrite and diode laser. Penetration depth is high, whereas absorption by melanin is low, making the Nd:YAG laser suitable for the treatment of larger and deeply located veins and for the treatment of patients with dark skin types. Clinical outcome of Nd:YAG laser therapy approximates that of sclerotherapy, although the latter is associated with less pain. New developments include (1) the use of a nonuniform pulse sequence or a dual-wavelength modality, inducing methemoglobin formation and enhancing the optical absorption properties of the target structure, (2) pulse stacking and multiple pass laser treatment, (3) combination of laser therapy with sclerotherapy or radiofrequency, and (4) indocyanin green enhanced laser therapy. Future studies will have to confirm the role of these developments in the treatment of leg veins. The literature still lacks double-blind controlled clinical trials comparing the different laser modalities with each other and with sclerotherapy. Such trials should be the focus of future research. © 2013 Springer-Verlag. 29 2 481 492 Robertson, L., Evans, C., Fowkes, F.G., Epidemiology of chronic venous disease (2008) Phlebology, 23, pp. 103-111 Evans, C.J., Allan, P.L., Lee, A.J., Bradbury, A.W., Vaughan, R.C., Fowkes, F.G.R., Prevalence of venous reflux in the general population on duplex scanning: The Edinburgh vein study (1998) Journal of Vascular Surgery, 28 (5), pp. 767-776 Ruckley, C.V., Evans, C.J., Allan, P.L., Telangiectasia in the Edinburgh Vein Study: Epidemiology and association with trunk varices and symptoms (2008) Eur J Vasc Endovasc Surg, 36, pp. 719-724 Somjen, G.M., Anatomy of the superficial venous system (1995) Dermatol Surg, 21, pp. 35-45 Mellor, R.H., Brice, G., Stanton, A.W.B., French, J., Smith, A., Jeffery, S., Levick, J.R., Mortimer, P.S., Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb (2007) Circulation, 115 (14), pp. 1912-1920. , DOI 10.1161/CIRCULATIONAHA.106.675348 Ouvry, P.A., Telangiectasia and sclerotherapy (1989) J Dermatol Surg Oncol, 15, pp. 177-181 Sebben, J.E., Sclerotherapy for telangiectasia of the lower extremity (1989) Dermatol Clin, 7, pp. 129-135 Neumann, H.A., Kockaert, M.A., The treatment of leg telangiectasia (2003) J Cosmet Dermatol, 2, pp. 73-81 Kern, P., Sclerotherapy of varicose leg veins. Technique, indications and complications (2002) Int Angiol, 21, pp. 40-45 Guex, J.J., Complications of sclerotherapy: An update (2010) Dermatol Surg, 36 (SUPPL. 2), pp. 1056-1063 Lupton, J.R., Alster, T.S., Romero, P., Clinical comparison of sclerotherapy versus long-pulsed Nd:YAG laser treatment for lower extremity telangiectases (2002) Dermatologic Surgery, 28 (8), pp. 694-697. , DOI 10.1046/j.1524-4725.2002.02029.x Apfelberg, D.B., Maser, M.R., Lash, H., Argon laser management of cutaneous vascular deformities. A preliminary report (1976) West J Med, 124, pp. 99-101 Apfelberg, D., Maser, M.R., Lash, H., Argon laser treatment of cutaneous vascular abnormalities: Progress report (1978) Annals of Plastic Surgery, 1 (1), pp. 14-18 Apfelberg, D.B., Maser, M.R., Lash, H., Use of the argon and carbon dioxide lasers for the treatment of superficial venous varicosities of the lower extremity (1984) Lasers in Surgery and Medicine, 4 (3), pp. 221-231. , DOI 10.1002/lsm.1900040302 Arndt, K.A., Argon laser therapy of small cutaneous vascular lesions (1982) Arch Dermatol, 118, pp. 220-224 Anderson, R.R., Parrish, J.A., Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation (1983) Science, 220 (4596), pp. 524-527 Braverman, I.M., The cutaneous microcirculation (2000) J Investig Dermatol Symp Proc, 5, pp. 3-9 Sadick, N.S., Sclerotherapy and ambulatory phlebectomy (2003) Dermatology, pp. 2399-2414. , Bolognia JL, Jorizzo JL, Rapini RP (eds) Mosby, London Braverman, I.M., Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states (1989) J Invest Dermatol, 93, pp. 2S-9S Redisch, W., Pelzer, R., Localized vascular dilatations of the human skin, capillary microscopy and related studies (1949) AmHeart J, 37, pp. 106-113 McCoppin, H.H., Hovenic, W.W., Wheeland, R.G., Laser treatment of superficial leg veins: A review (2011) Dermatol Surg, 37, pp. 729-741 Sommer, A., Van Mierlo, P.L.H., Neumann, H.A.M., Kessels, A.G.H., Red and blue telangiectasias: Differences in oxygenation? (1997) Dermatologic Surgery, 23 (1), pp. 55-59 Weiss, R.A., Weiss, M.A., Doppler ultrasound findings in reticular veins of the thigh subdermic lateral venous system and implications for sclerotherapy (1993) Journal of Dermatologic Surgery and Oncology, 19 (10), pp. 947-951 Schadeck, M., Current status of sclerotherapy of varicose veins (2003) Hautarzt, 54, pp. 1065-1072 Anderson, R.R., Parrish, J.A., The optics of human skin (1981) Journal of Investigative Dermatology, 77 (1), pp. 13-19 Greenwald, J., Rosen, S., Anderson, R.R., Comparative histological studies of the tunable dye (at 577 nm) laser and argon laser: The specific vascular effects of the dye laser (1981) Journal of Investigative Dermatology, 77 (3), pp. 305-310 Van Gemert, M., Welch, A., Clinical use of laser-tissue interactions (1989) IEEE Eng Med Biol Mag, 8, pp. 10-13 Ross, E.V., Domankevitz, Y., Laser treatment of leg veins: Physical mechanisms and theoretical considerations (2005) Lasers in Surgery and Medicine, 36 (2), pp. 105-116. , DOI 10.1002/lsm.20141 Garden, J.M., Tan, O.T., Kerschmann, R., Effect of dye laser pulse duration on selective cutaneous vascular injury (1986) J Invest Dermatol, 87, pp. 653-657 Dierickx, C.C., Casparian, J.M., Venugopalan, V., Thermal relaxation of port-wine stain vessels probed in vivo: The need for 1-10-millisecond laser pulse treatment (1995) J Invest Dermatol, 105, pp. 709-714 Anderson, R.R., Parrish, J.A., Microvasculature can be selectively damaged using dye lasers: A basic theory and experimental evidence in human skin (1981) Lasers in Surgery and Medicine, 1 (3), pp. 263-276 Malskat, W., Poluektova, A., Van Der Geld, C., Endovenous laser ablation (EVLA): A review of mechanisms, modeling outcomes and issues for debate (2013) Lasers Med Sci, , in press Baumler, W., Ulrich, H., Hartl, A., Landthaler, M., Shafirstein, G., Optimal parameters for the treatment of leg veins using Nd:YAG lasers at 1064 nm (2006) British Journal of Dermatology, 155 (2), pp. 364-371. , DOI 10.1111/j.1365-2133.2006.07314.x Nelson, J.S., Milner, T.E., Anvari, B., Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation (1995) Arch Dermatol, 131, pp. 695-700 Tong, A.K.F., Tan, O.T., Boll, J., Ultrastructure: Effects of melanin pigment on target specificity using a pulsed dye laser (577 nm) (1987) Journal of Investigative Dermatology, 88 (6), pp. 747-752 Manuskiatti, W., Eimpunth, S., Wanitphakdeedecha, R., Effect of cold air cooling on the incidence of postinflammatory hyperpigmentation after Q-switched Nd:YAG laser treatment of acquired bilateral nevus of Ota-like macules (2007) Archives of Dermatology, 143 (9), pp. 1139-1143. , http://archderm.ama-assn.org/cgi/reprint/143/9/1139, DOI 10.1001/archderm.143.9.1139 Nelson, J.S., Milner, T.E., Anvari, B., Tanenbaum, B.S., Svaasand, L.O., Kimel, S., Dynamic epidermal cooling in conjunction with laser-induced photothermolysis of port wine stain blood vessels (1996) Lasers in Surgery and Medicine, 19 (2), pp. 224-229. , DOI 10.1002/(SICI)1096-9101(1996)19:2<224::AID-LSM Anvari, B., Tanenbaum, B.S., Milner, T.E., A theoretical study of the thermal response of skin to cryogen spray cooling and pulsed laser irradiation: Implications for treatment of port wine stain birthmarks (1995) Phys Med Biol, 40, pp. 1451-1465 Waldorf, H.A., Alster, T.S., McMillan, K., Kauvar, A.N.B., Geronemus, R.G., Nelson, J.S., Effect of dynamic cooling on 585-nm pulsed dye laser treatment of port- wine stain birthmarks (1997) Dermatologic Surgery, 23 (8), pp. 657-662. , PII S1076051297001428 Buscher, B.A., McMeekin, T.O., Goodwin, D., Treatment of leg telangiectasia by using a long-pulse dye laser at 595 nm with and without dynamic cooling device (2000) Lasers Surg Med, 27, pp. 171-175 Altshuler, G.B., Zenzie, H.H., Erofeev, A.V., Smirnov, M.Z., Anderson, R.R., Dierickx, C., Contact cooling of the skin (1999) Physics in Medicine and Biology, 44 (4), pp. 1003-1023. , DOI 10.1088/0031-9155/44/4/014, PII S0031915599926234 Jia, W., Tran, N., Sun, V., Photocoagulation of dermal blood vessels with multiple laser pulses in an in vivo microvascular model (2012) Lasers Surg Med, 44, pp. 144-151 Vincent, J.R., Jones, G.T., Hill, G.B., Failure of microvenous valves in small superficial veins is a key to the skin changes of venous insufficiency (2011) J Vasc Surg, 54, pp. 62S-69S Fournier, N., Brisot, D., Mordon, S., Treatment of leg telangiectases with a 532 nm KTP laser in multipulse mode (2002) Dermatologic Surgery, 28 (7), pp. 564-571. , DOI 10.1046/j.1524-4725.2002.01316.x Woo, W.K., Jasim, Z.F., Handley, J.M., Sadick, N.S., 532-nm Nd:YAG and 595-nm Pulsed Dye Laser Treatment of Leg Telangiectasia Using Ultralong Pulse Duration (2003) Dermatologic Surgery, 29 (12), pp. 1176-1180. , DOI 10.1111/j.1524-4725.2003.29383.x West, T.B., Alster, T.S., Comparison of the long-pulse dye (590-595 nm) and KTP (532 nm) lasers in the treatment of facial and leg telangiectasias (1998) Dermatologic Surgery, 24 (2), pp. 221-226. , PII S107605129800438X McMeekin, T.O., Treatment of spider veins of the leg using a long-pulsed Nd:YAG laser (Versapulse) at 532 nm (1999) J Cutan Laser Ther, 1, pp. 179-180 Bernstein, E.F., Kornbluth, S., Brown, D.B., Black, J., Treatment of spider veins using a 10 millisecond pulse-duration frequency-doubled neodymium YAG laser (1999) Dermatologic Surgery, 25 (4), pp. 316-320. , DOI 10.1046/j.1524-4725.1999.08253.x Massey, R.A., Katz, B.E., Successful treatment of spider leg veins with a high-energy, long-pulse, frequency-doubled neodymium:YAG laser (HELP-G) (1999) Dermatologic Surgery, 25 (9), pp. 677-680. , DOI 10.1046/j.1524-4725.1999.98279.x Ozden, M.G., Bahcivan, M., Aydin, F., Clinical comparison of potassium-titanyl-phosphate (KTP) versus neodymium:YAG (Nd:YAG) laser treatment for lower extremity telangiectases (2011) J Dermatolog Treat, 22, pp. 162-166 Spendel, S., Prandl, E.C., Schintler, M.V., Treatment of spider leg veins with the KTP (532 nm) laser - A prospective study (2002) Lasers Surg Med, 31, pp. 194-201 Faurschou, A., Olesen, A.B., Leonardi-Bee, J., Lasers or light sources for treating port-wine stains (2011) Cochrane Database Syst Rev, pp. CD007152 Bernstein, E.F., Lee, J., Lowery, J., Brown, D.B., Geronemus, R., Lask, G., Hsia, J., Treatment of spider veins with the 595 nm pulsed-dye laser (1998) Journal of the American Academy of Dermatology, 39 (5 I), pp. 746-750 Hsia, J., Lowery, J.A., Zelickson, B., Treatment of leg telangiectasia using a long-pulse dye laser at 595 nm (1997) Lasers in Surgery and Medicine, 20 (1), pp. 1-5. , DOI 10.1002/(SICI)1096-9101(1997)20:1<1::AID-LSM1 Reichert, D., Evaluation of the long-pulse dye laser for the treatment of leg telangiectasias (1998) Dermatol Surg, 24, pp. 737-740 Kono, T., Yamaki, T., Ercocen, A.R., Fujiwara, O., Nozaki, M., Treatment of leg veins with the long pulse dye laser using variable pulse durations and energy fluences (2004) Lasers in Surgery and Medicine, 35 (1), pp. 62-67. , DOI 10.1002/lsm.20035 Alora, M.B., Stern, R.S., Arndt, K.A., Dover, J.S., Comparison of the 595 nm long-pulse (1.5 msec) and ultralong-pulse (4 msec) lasers in the treatment of leg veins (1999) Dermatologic Surgery, 25 (6), pp. 445-449. , DOI 10.1046/j.1524-4725.1999.08154.x Rubin, I.K., Farinelli, W.A., Doukas, A., Optimal wavelengths for vein-selective photothermolysis (2012) Lasers Surg Med, 44, pp. 152-157 McDaniel, D.H., Ash, K., Lord, J., Newman, J., Adrian, R.M., Zukowski, M., Laser therapy of spider leg veins: Clinical evaluation of a new long pulsed alexandrite laser (1999) Dermatologic Surgery, 25 (1), pp. 52-58. , DOI 10.1046/j.1524-4725.1999.08117.x Ross, E.V., Meehan, K.J., Gilbert, S., Optimal pulse durations for the treatment of leg telangiectasias with an alexandrite laser (2009) Lasers Surg Med, 41, pp. 104-109 Trelles, M.A., Allones, I., Alvarez, J., Velez, M., Martin-Vazquez, M., Trelles, O.R., Luna, R., Mordon, S.R., The 800-nm diode laser in the treatment of leg veins: Assessment at 6 months (2006) Journal of the American Academy of Dermatology, 54 (2), pp. 282-289. , DOI 10.1016/j.jaad.2005.09.009, PII S0190962205029993 Passeron, T., Olivier, V., Duteil, L., Desruelles, F., Fontas, E., Ortonne, J.-P., The new 940-nanometer diode laser: An effective treatment for leg venulectasia (2003) Journal of the American Academy of Dermatology, 48 (5), pp. 768-774. , DOI 10.1067/mjd.2003.191 Eremia, S., Li, C., Umar, S.H., A side-by-side comparative study of 1064 nm Nd:Yag, 810 nm diode and 755 nm alexandrite lasers for treatment of 0.3-3 mm leg veins (2002) Dermatologic Surgery, 28 (3), pp. 224-230. , DOI 10.1046/j.1524-4725.2002.01162.x Rogachefsky, A.S., Silapunt, S., Goldberg, D.J., Nd:YAG laser (1064 nm) irradiation for lower extremity telangiectases and small reticular veins: Efficacy as measured by vessel color and size (2002) Dermatologic Surgery, 28 (3), pp. 220-223. , DOI 10.1046/j.1524-4725.2002.01141.x Omura, N.E., Dover, J.S., Arndt, K.A., Kauvar, A.N.B., Treatment of reticular leg veins with a 1064 nm long-pulsed Nd:YAG laser (2003) Journal of the American Academy of Dermatology, 48 (1), pp. 76-81. , DOI 10.1067/mjd.2003.38 Munia, M.A., Wolosker, N., Munia, C.G., Comparison of laser versus sclerotherapy in the treatment of lower extremity telangiectases: A prospective study (2012) Dermatol Surg, 38, pp. 635-639 Levy, J.L., Elbahr, C., Jouve, E., Mordon, S., Comparison and Sequential Study of Long Pulsed Nd:YAG 1,064 nm Laser and Sclerotherapy in Leg Telangiectasias Treatment (2004) Lasers in Surgery and Medicine, 34 (3), pp. 273-276. , DOI 10.1002/lsm.20010 Coles, C.M., Werner, R.S., Zelickson, B.D., Comparative pilot study evaluating the treatment of leg veins with a long pulse ND:YAG laser and sclerotherapy (2002) Lasers Surg Med, 30, pp. 154-159 Fodor, L., Ramon, Y., Fodor, A., A side-by-side prospective study of intense pulsed light and Nd:YAG laser treatment for vascular lesions (2006) Ann Plast Surg, 56, pp. 164-170 Parlette, E.C., Groff, W.F., Kinshella, M.J., Optimal pulse durations for the treatment of leg telangiectasias with a neodymium YAG laser (2006) Lasers Surg Med, 38, pp. 98-105 Sadick, N.S., Laser treatment with a 1064-nm laser for lower extremity class I-III veins employing variable spots and pulse width parameters (2003) Dermatol Surg, 29, pp. 916-919 Sadick, N.S., Long-term results with a multiple synchronized-pulse 1064 nm Nd:YAG laser for the treatment of leg venulectasias and reticular veins (2001) Dermatol Surg, 27, pp. 365-369 Sadick, N.S., Prieto, V.G., Shea, C.R., Nicholson, J., McCaffrey, T., Clinical and pathophysiologic correlates of 1064-nm Nd:YAG laser treatment of reticular veins and venulectasias (2001) Archives of Dermatology, 137 (5), pp. 613-617 Goldman, M.P., Eckhouse, S., Photothermal sclerosis of leg veins (1996) Dermatol Surg, 22, pp. 323-330. , ESC Medical Systems, LTD Photoderm VL Cooperative Study Group Schroeter, C.A., Wilder, D., Reineke, T., Thurlimann, W., Raulin, C., Neumann, H.A.M., Clinical significance of an intense, pulsed light source on leg telangiectasias of up to 1 mm diameter (1997) European Journal of Dermatology, 7 (1), pp. 38-42 Mordon, S., Brisot, D., Fournier, N., Using a "non uniform pulse sequence" can improve selective coagulation with a Nd:YAG laser (1.06 microm) Thanks to met-hemoglobin absorption: A clinical study on blue leg veins (2003) Lasers in Surgery and Medicine, 32 (2), pp. 160-170. , DOI 10.1002/lsm.10135 Trelles, M.A., Weiss, R., Moreno-Moragas, J., Treatment of leg veins with combined pulsed dye and Nd:YAG lasers: 60 patients assessed at 6 months (2010) Lasers Surg Med, 42, pp. 609-614 Tanghetti, E., Sherr, E.A., Treatment of telangiectasia using the multi-pass technique with the extended pulse width, pulsed dye laser (Cynosure V-Star) (2003) Journal of Cosmetic and Laser Therapy, 5 (2), pp. 71-75. , DOI 10.1080/14764170305517 Kauvar, A.N., Lou, W.W., Pulsed alexandrite laser for the treatment of leg telangiectasia and reticular veins (2000) Arch Dermatol, 136, pp. 1371-1375 Brunnberg, S., Lorenz, S., Landthaler, M., Hohenleutner, U., Evaluation of the long pulsed high fluence alexandrite laser therapy of leg telangiectasia (2002) Lasers in Surgery and Medicine, 31 (5), pp. 359-362. , DOI 10.1002/lsm.10117 Moreno-Moraga, J., Hernandez, E., Royo, J., Optimal and safe treatment of spider leg veins measuring less than 1.5 mm on skin type IV patients, using repeated low-fluence Nd:YAG laser pulses after polidocanol injection (2013) Lasers Med Sci, 28, pp. 925-933 Goldman, M.P., Fitzpatrick, R.E., Pulsed-dye laser treatment of leg telangiectasia: with and without simultaneous sclerotherapy (1990) Journal of Dermatologic Surgery and Oncology, 16 (4), pp. 338-344 Sadick, N.S., Trelles, M.A., A clinical, histological, and computer-based assessment of the polaris LV, combination diode, and radiofrequency system, for leg vein treatment (2005) Lasers in Surgery and Medicine, 36 (2), pp. 98-104. , DOI 10.1002/lsm.20127 Trelles, M.A., Martin-Vazquez, M., Trelles, O.R., Treatment effects of combined radio-frequency current and a 900 nmdiode laser on leg blood vessels (2006) Lasers Surg Med, 38, pp. 185-195 Chess, C., Prospective study on combination diode laser and radiofrequency energies (ELOS) for the treatment of leg veins (2004) J Cosmet Laser Ther, 6, pp. 86-90 Shafirstein, G., Moreno, M., Klein, A., Treatment of leg veins with indocyanine green and lasers investigated with mathematical modelling (2011) Int J Hyperthermia, 27, pp. 771-781 Klein, A., Baumler, W., Koller, M., Indocyanine greenaugmented diode laser therapy of telangiectatic leg veins: A randomized controlled proof-of-concept trial (2012) Lasers Surg Med, 44, pp. 369-376 Klein, A., Buschmann, M., Babilas, P., Indocyanine green-augmented diode laser therapy vs. Long-pulsed Nd:YAG (1064 nm) laser treatment of telangiectatic leg veins: A randomized controlled trial (2013) Br J Dermatol, 169, pp. 365-373 Schwartz, L., Maxwell, H., Sclerotherapy for lower limb telangiectasias (2011) Cochrane Database Syst Rev, pp. CD008826