Artículos de revistas
The Golden Bridge For Nature: The New Biology Applied To Bioplastics
Registro en:
Polymer Reviews. , v. 49, n. 2, p. 85 - 106, 2009.
15583724
10.1080/15583720902834817
2-s2.0-70349504375
Autor
Rincones J.
Zeidler A.F.
Grassi M.C.B.
Carazzolle M.F.
Pereira G.A.G.
Institución
Resumen
There is a common concept in life: large and complex molecules result from the synthesis of units that are later joined together. Mankind learned this principle and employed it to develop language, culture, and technology. This same principle is applied in the petrochemical industry by fractionating the fossilized carbon chains into small molecules and then polymerizing them in order to develop synthetic polymers, which are much more flexible, resistant, and durable than natural polymers. Recent developments in molecular biology have opened the possibility of modifying organisms in order to create new biosynthetic routes for the production of monomers that would fit the biggest challenge in modern society: the production of high quality polymers from renewable feedstocks. This review focuses on the latest advances in molecular biology and the new knowledge and technologies that enable the possibility of converting cells into efficient and sustainable chemical reactors. The first examples of this technological advancement are already in the market. 49 2 85 106 Madsen, M., The role of biomass in the future global energy supply (2007) The 20th World Energy Congress, , http://vbn.aau.dk/fbspretrieve/14071392/ MichaelMadsenWECYouthProgrammepaper.pdf, (last accessed Sept. 2008) (2007), http://nobelprize.org/nobelprizes/peace/laureates/2007/index.html, The Nobel Foundation (last accessed Sept. 2008)http://www.wasteonline.org.uk/resources/InformationSheets/Plastics.htm, (last accessed Sept. 2008)Stevens, E.S., What makes green plastics green? (2003) Biocycle, 44, pp. 24-27 Lee, S.Y., Hong, S.H., Lee, S.H., Park, S.J., Fermentative production of chemicals that can be used for polymer synthesis (2004) Macromol. Biosci., 4, pp. 157-164 Futuyma, D.J., Progress on the Origin of Species (2005) PLoS Biol., 3, pp. 197-199 Watson, J.D., Crick, F.H., The structure of DNA (1953) Cold SpringHarbor Symposia on Quantitative Biology, 18, pp. 123-131 Nirenberg, M., Caskey, C.T., Marshall, R., Brimacombe, R., Kellogg, D., Doctor, B., Hatfield, D., Anderson, F., The RNA code and protein synthesis (1966) Cold Spring Harbor Symposia on Quantitative Biology, 31, pp. 11-24 Crick, F., Central dogma of molecular biology (1970) Nature, 227, pp. 561-563 Smith, K.B., Genetic engineering - Techniques and potential (1976) Trends Biochem. Sci., , June 1976 Goeddel, D.V., Kleid, D.G., Bolivar, F., Heyneker, H.L., Yansura, D.G., Crea, R., Hirose, T., Riggs, A.D., Expression in Escherichia coli of chemically synthesized genes for human insulin (1979) Proc. Natl. Acad. Sci., 79, pp. 106-110 Maxam, A.M., Gilbert, W., A new method for sequencing DNA (1977) Proc. Natl. Acad. Sci., 74, pp. 560-564 Mullis, K., Fallona, F., Horng. Saikir., S.S., Erlich, H., Specific enzymatic amlification of DNA in vitro: The polymerase chain reaction (1986) Cold Spring Harbor Symposia on Quantitative Biology, 51, pp. 263-273 Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Naylor, J., Initial sequencing and analysis of the human genome (2001) Nature, 409, pp. 860-921 Human Genome Project Information, , http://www.ornl.gov/sci/techresources/HumanGenome/home.shtml, Genomics.energy.gov. (last accessed Sept. 2008) Ideker, T., Galitski, T., Hood, L., A new approach to decoding life: Systems Biology (2001) Annu. Rev. Genom. Hum. Genet., pp. 343-372 Hood, L., Galas, D., The digital code of DNA (2003) Nature, 421, pp. 444-448 Sanger, F., Nicklen, S., Coulson, A.R., DNA sequencing with chain-terminating inhibitors (1977) Proc. Natl. Acad. Sci., 74, pp. 5463-5467 Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, A.R., Kerlavage, A.R., Bult, C.J., Venter, J.C., Whole-genome random sequencing and assembly of Haemophilus influenzae Rd (1995) Science, 269, pp. 496-512 http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome, Entrez Genome: (last accessed Oct. 2008)The EMBL Nucleotide Sequence Database, , http://www.ebi.ac.uk/embl/Services/DBStats/, Statistics: (last accessed Sept. 2008) Chan, E.Y., Advances in sequencing technology (2005) Mutat. Res., 573, pp. 13-40 Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Genome sequencing in microfabricated high-density picolitre reactors (2005) Nature, 437, pp. 376-380 Bentley, D.R., Whole-genome resequencing (2006) Curr. Opin. Genet., 16, pp. 545-552 Morozova, O., Marra, M.A., Applications of next-generation sequencing technologies in functional genomics (2008) Genomics, 92, pp. 255-264 Shendure, J., Mitra, R.D., Varma, C., Church, G.M., Advanced sequencing technologies: Methods and goals (2004) Nat. Rev. Genet., 5, pp. 335-344 Austin, C.P., The completed human genome: Implications for chemical biology (2003) Curr. Opin. Chem. Biol., 7, pp. 511-515 Sebaihia, M., Wren, B.W., Mullany, P., Fairweather, N.F., Minton, N., Stabler, R., Thomson, N.R., Parkhill, J., The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome (2006) Nat. Genet., 38, pp. 779-786 Methe, B.A., Nelson, K.E., Eisen, J.A., Paulsen, I.T., Nelson, W., Heidelberg, J.F., Wu, D., Fraser, C.M., Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments (2003) Science, 302, pp. 1967-1969 Weiner, R.M., Taylor, L.E., Henrissat, B., Hauser, L., Land, M., Coutinho, P.M., Rancurel, C., Hutcheson, S., Complete genome sequence of the complex carbohydrate-degradingmarine bacterium, Saccharophagus degradans strain 2-40(T) (2008) Plos Genet., 4, pp. e1000087 Park, S.J., Lee, S.Y., Cho, J., Kim, T.Y., Lee, J.W., Park, J.H., Han, M.J., Global physiological understanding and metabolic engineering of microorganisms based on omics studies (2005) Appl. Microbiol. Biotechnol., 68, pp. 567-579 Joyce, A.R., Palsson, B.O., The model organism as a system: Integrating 'omics' data sets (2006) Nature, 7, pp. 198-210 Palsson, B., In silico biology through "omics" (2002) Nat. Biotechnol., 20, pp. 649-650 Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Integrated genomic and proteomic analyses of a systematically perturbed metabolic network (2001) Science, 292, pp. 929-934 Ge, H., Walhout, A.J.M., Vidal, M., Integrating 'omic' information: A bridge between genomics and systems biology (2003) Trends Genet., 19, pp. 551-560 Hobom, B., Gene surgery: On the threshold of synthetic biology (1980) Med. Klin., 21, pp. 834-841 Benner, S.A., Sismour, A.M., Synthetic biology (2005) Nat. Rev. Genet., 6, pp. 533-543 Russ, Z.N., Synthetic biology: Enormous possibility, exaggerated perils (2008) J. Biol. Eng., 2, pp. 1-3 Bailey, J.E., Toward a science of metabolic engineering 9 (1991) Science, 252, pp. 1668-1675 http://parts2.mit.edu/wiki/index.php/MainPage, Massachusetts Institute of Technology. International Genetically Engineered CompetitionHome Page: (last accessed Sept. 2008)Endy, D., Foundations for engineering biology (2005) Nat. Rev., 438, pp. 449-453 Major progress announced in DNA synthesis (1984) Nucleic Acids Res., 12, p. 1. , Applied Biosystems http://www.jcvi.org/cms/research/projects/synthetic-bacterial-genome/ press-release/, Venter Institute Scientists Create First Synthetic Bacterial Genome: (last accessed Sept. 2008)Ro, D., Paradise, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Keasling, J.D., Production of the antimalarial drug precursor artemisinic acid in engineered yeast (2006) Nature, 440, pp. 940-943 http://www.wasteonline.org.uk/resources/InformationSheets/Plastics.htm, Plastic Recycling Information Sheet: (last accessed Sept. 2008)Luengo, J.M., Garcia, B., Sandoval, A., Naarro, G., Olivera, E.R., Bioplastics from microorganisms (2003) Curr. Opin. Microbiol., 6, pp. 251-260 Steinbuchel, A., Hein, S., Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms (2001) Adv. Biochem. Eng. Biotechnol., 71, pp. 81-123 Khanna, S., Srivastava, A.K., Recent advances in microbial polyhydroxyalkanoates (2005) Process Biochem., 40, pp. 607-619 Kalia, V.C., Lal, S., Cheema, S., Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: Horizontal gene transfer (2007) Gene, 389, pp. 19-26 Nonato, R., Mantelatto, P., Rossell, C., Integrated production of biodegradable plastic, sugar and ethanol (2001) Appl. Microbiol. Biotechnol., 57, pp. 1-5 Anderson, A.J., Dawes, E.A., Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates (1990) Microbiol. Mol. Biol. Rev., 54, pp. 450-472 Braunegg, G., Lefebrve, G., Genser, K.F., Polyhydroxyalkanoates, biopolyesters from renewable sources: Physiological and engineering aspects (1998) Journal of Biotechnology, 65, pp. 127-161 Steinbuchel, A., Valentine, S.J., Diversity of bacterial polyhydroxyalkanoic acids (1995) FEMS Microbiology Letters, 128, pp. 219-228 Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., Shah, S., Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review (2007) Biotechnol. Adv., 25, pp. 148-175 Chandra, R., Rustgi, R., Biodegradable Polymers (1998) Progr. Polym. Sci., 23, pp. 1273-1335 Chiellini, E., Solaro, R., Biodegradable polymeric materials (1996) Adv. Mater., 8, pp. 305-313 What Is PSM?, , http://www.psm-hk.com/Eng/material.htm, (last accessed Feb. 2009) What Is PSM?, , http://www.psmna.com/whatispsm.html, (last accessed Sept. 2008) The Miracles of Science.DuPont™Biomax® Sheet, Resins and Modifiers, , http://www2.dupont.com/Biomax/enUS/, (last accessed March 2009) Biodegradable Plastic Ever Corn TM, , http://www.japancornstarch.com/h13.html, (last accessed Feb. 2009) The Renewable Plastic Cereplast Compostables and Cereplast Hybrid Resins, , http://www.cereplast.com/product.php, (last accessed Sept. 2008) Changing the Nature of Plastics, , http://www.plantic.com.au/ourtechnologies/capabilities/ starch-technologies/, Starch Technologies: (last accessed Feb. 2009) Long, Y., Coombs, S., Christie, G.B.Y., (2007) Biodegradable Polymer, , US20070148383 Evstatiev, M., Polyamides (1997) Handbook of Thermoplastics, 1. , Olabisi, O., Eds., CRC Press:New York City http://www.arkema-inc.com/index.cfm?pag=109, Change reference to: "Arkema Inc. North America. Rilsan Polyamide 11 and 12: (last accessed Sept. 2008)Logan, L.R., Udesh, S.V., Method for Preparing Sebacic Acid and Octanol-2, , US Patent 6392074 B1 Ogunniyi, D.S., Castor oil: A vital industrial raw material (2006) Bioresour. Technol., 97, pp. 1086-1091 http://www.plasticsportal.net/wa/plasticsEU?enGB/portal/show/common/ plasticsportalnews/2007/07450, BASF The Chemical Company. Polyamide from renewable raw materials: (last accessed Sept. 2008)http://www.plastemart.com/upload/Literature/specialpolyamides.asp, Special polyamides are expected to grow much faster than polyamide 6 & 6.6: (last accessed Feb. 2009)Wu, S., Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid: Characterization and biodegradability assessment (2005) Macromolecular Bioscience, 5, pp. 352-361 (1965) Preparation of Optically Active Lactides, , EI du Pont de Nemours&Co. Inc. UKPatent 1007347 De Vries, K.S., (1989) Preparation of Polylactic Acid and Copolymers of Lactic Acids, , US4797468 Mehta, R., Kumar, V., Bhunia, H., Upadhyay, S.N., Synthesis of poly(lactic acid): A review (2005) Polymer Rev., 45, pp. 325-349 Kowalski, A., Libiszowski, J., Duda, A., Penczeck, S., Polymerization of l,l-dilactide initiated by tin(II) butoxide (2000) Macromol., 36, pp. 1964-1971 Venus, J., Richter, K., Production of lactic acid from barley: Strain selection, phenotypic and medium optimization (2006) Eng. Life Sci., 6, pp. 492-500 Ding, S., Tan, T., L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies (2006) Process Biochem., 41, pp. 1451-1454 Ishida, N., Saitoh, S., Onishi, T., Tokuhiro, K., Nagamori, E., Kitamoto, K., Takahashi, H., The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production (2006) Biosci. Biotech. Biochem., 70, pp. 1148-1153 http://www.natureworksllc.com/, Ingeo, Ingenious materials. (last accessed Sept. 2008)Datta, R., Henry, M., Lactic acid: Recent advances in products, processes and technologies - A review (2006) J. Chem. Technol. Biotechnol., 81, pp. 1119-1129 Biebl, H., Menzel, K., Zeng, A.P., Deckwer, W.D., Microbial production of 1,3-propanediol (1999) Appl. Microbiol. Biotechnol., 52, pp. 289-297 Haveren, J.V., Scott, E.L., Sanders, J., Bulk chemicals from biomass (2008) BioFPR., 2, pp. 41-57 Nakamura, C.E., Whited, G.M., Metabolic engineering for the microbial production of 1,3- propanediol (2003) Curr. Opin. Biotechnol., 14, pp. 454-459 Antoniewicz, M.R., Kraynie, D.F., Laffend, L.A., Gonzalez-Lergier, J., Kelleher, J.K., Stephanopoulos, G., Metabolic flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol (2007) Metab. Eng., 9, pp. 277-292 Cao, N.J., Du, J.X., Chen, C.S., Gong, C.S., Tsao, G.T., Production of fumaric acid by immobilized Rhizopus using rotary biofilm contactor (1997) Appl. Biochem. Biotechnol., pp. 63-65. , 387-394 Vemuri, G.N., Eiteman, M.A., Altman, E., Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions (2002) J. Ind. Microbiol. Biotechnol., 28, pp. 325-332 Vemuri, G.N., Eiteman, M.A., Altman, E., Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli (2002) Appl. Environ. Microbiol., 68, pp. 1715-1727 Frost, J.W., Draths, K.M., Synthesis of Catechol from Biomass-derived Carbon Sources, p. 1995. , Change Patent Number. Correct Reference: WO/1995/007979 Duh, B., Solid-state polymerization of poly(trimethylene terephthalate) (2003) J. Appl. Polymer Sci., 89, pp. 3188-3200 Dozois, K.P., Lee, G.A., Carr, C.J., Hachtel, F., Krantz, J.C., The fermentation of propylene glycol by members of the escherichia-aerobacter-intermediate groups 30 (1937) J. Bacteriol., 34, pp. 9-13 Laffend, L.A., Nagarajan, V., Nakamura, C.E., (2007) Bioconversion of A Fermentable Carbon Source to 1 3-propanediol by A Single Microorganism, , US7169588 Nair, R.V., Payne, M.S., Trimbur, D.E., Valle, F., (1999) Method for the Production of Glycerol by Recombinant Organisms, , WO 99/28480 Diaz-Torres, M., Dunn-Coleman, N.S., Chase, M.W., Trimbur, D., (2005) Method for the Recombinant Production of 1 3-propanediol, , US Patent 6953684 Emptage, M., Haynie, S.L., Laffebd, L.A., Pucci, J.P., Whited, G., (2006) Process for the Biological Production of 1 3-propanediol with High Titer, , US Patent 7067300 http://www.duponttateandlyle.com/, Bioproducts: (last accessed Sept. 2008)Westervelt, R., DuPont to launch renewable and nano-based engineering plastics (2006) Chem. Week, 168, pp. 9-10 Carlson, R., Laying the foundations for a bio-economy (2007) Syst. Synth. Biol., 1, pp. 109-117 http://www2.dupont.com/Government/enUS/newsevents/article20060620.html, The Miracles of Science. DuPont Engineering Polymers today announced at NPE that it is moving forward with plans to produce a new family of high-performance thermoplastic resins and elastomer products made with renewable resources: (last accessed March 2009)Cunha, A.F., Missawa, S.K., Pereira, G.A.G., Industrial potential of yeast biotechnology in the production of bioethanol in Brazil: The example of conditional flocculation (2006) Industrial Perspectives for Bioethanol, , Franco, T.T., Ed., Instituto Uniemp: Sao Paulo Wheals, A.E., Basso, L.C., Alves, D.M.G., Amorim, H.V., Fuel ethanol after 25 years (1999) Trends Biotechnol., 17, pp. 482-487 Bai, F.W., Anderson, W.A., Moo-Young, M., Ethanol fermentation technologies from sugar and starch feedstocks (2008) Biotechnol. Adv., 26, pp. 89-105 Westergaard, S.L., Oliveira, A.P., Bro, C., Olsson, L., Nielsen, J., A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae (2007) Biotechnol. Bioeng., 96, pp. 134-145 Goldemberg, J., Coelho, S.T., Guardabassi, P., The sustainability of ethanol production from sugarcane (2008) Energy Policy, 36, pp. 2086-2097 Marris, E., Sugarcane and ethanol: Drink the best and drive the rest (2006) Nature, 444, pp. 670-672 Vertes, A.A., Inui, M., Yukawa, H., Technological options for biological fuel ethanol (2008) J. Mol. Microbiol. Biotechnol., 15, pp. 16-30 http://www.bp.com/sectiongenericarticle.do?categoryId= 9023771&contentId=7044470, Global oil consumption grew by 1 mb/d: (last accessed Sept. 2008)Koh, L.P., Ghazoul, J., Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities (2008) Biological Conservation, 141, pp. 2450-2460 Lynd, L.R., Cushman, J.H., Nichols, R.J., Wyman, C.E., Fuel ethanol from cellulosic biomass (1991) Science, 251, pp. 1318-1323 Badger, P.C., Ethanol from cellulose: A general review (2002) Trends in New Crops and New Uses, pp. 17-21 In Portuguese, , http://www.dedini.com.br/pt/aea.html, Ind́ustrias de Base. Dedini açucar e etanol: (last accessed Sept. 2008) Oliverio, J.L., Soares, P.A., Produção de Á Lcool A Partir de Bagaço: O Processo Didini Hidrólise Ŕapida, , http://www.iea.usp.br/iea/online/midiateca/etanolcelulosicosoares.pdf2007, (last accessed Sept. 2008). In Portuguese http://www.fapesp.br/materia/3257/chamadas-de-propostas/ bioen-chamada-fapesp-dedini-para-apoio-a-pesquisa.htm, BIOEN-Chamada FAPESP-Dedini para Apoio a Pesquisa: (last accessed Sept. 2008) In Portuguesehttp://www.amyris.com/index.php?option=com.content&task=view&id= 54&Itemid=307, Amyris and Crystalsev Join to Launch Innovative Renewable Diesel from Sugarcane by 2010: (last accessed March 2009)http://www.braskem.com.br/site/portalbraskem/en/saladeimprensa/ saladeimprensadetalhes6062.aspx2007, A World Class Brazilian Petrochemical Company. Braskem has the first certified green Polyethylene in the World: (last accessed Sept. 2008)http://www.abdi.com.br/?q=node/353, Braskem Define F́abrica de Pĺastico Verde: (last accessed Sept. 2008) In Portuguesehttp://www.braskem.com.br/site/portalbraskem/en/saladeimprensa/ saladeimprensadetalhes7271.aspx, A World Class Brazilian Petrochemical Company. Braskem achieves new technological advance for production of green polymers: (last accessed Sept. 2008)