Artículos de revistas
Formation Energy Of Graphene Oxide Structures: A Molecular Dynamics Study On Distortion And Thermal Effects
Registro en:
Carbon. Elsevier Ltd, v. 84, n. 1, p. 365 - 374, 2015.
86223
10.1016/j.carbon.2014.12.026
2-s2.0-84922254287
Autor
Fonseca A.F.
Zhang H.
Cho K.
Institución
Resumen
Ab initio predictions for the stability of different graphene oxide (GO) structures have been shown to conflict with experimental observations. While ab initio studies predict that the most stable GOs are fully oxygen-covered (either with epoxide or hydroxyl), stable asproduced GOs are partially oxygen-covered and predominantly epoxide-covered structures. Although this discrepancy is being examined in terms of calculations of free energies of GOs and large diffusion energy-barriers for oxygen groups on graphene, there is still a lack of understanding on the energetic properties of GOs using classical molecular dynamics, which is able to investigate their structural distortion. Here, using the reactive empirical bond order (REBO) molecular dynamics potential, we compute the free energy and binding energy of GOs at different oxygen concentrations and epoxide to hydroxyl ratios, as well as the distortion energies of graphene lattice. Although epoxide causes more distortion on the carbon hexagonal planar structure, it provides more stability to the GO structure. The difference between free energy and binding energy of GOs is shown to be independent of oxygen coverage. These results allow gaining more insight on the issue of GO stability and show that REBO can capture most of experimental properties of GOs. 84 1 365 374 Wu, X., Sprinkle, M., Li, X., Ming, F., Berger, C., De Heer, W.A., Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics (2008) Phys Rev Lett, 101, p. 026801. , http://dx.doi.org/10.1103/PhysRevLett.101.026801 Mattson, E.C., Pu, H., Cui, S., Schofield, M.A., Rhim, S., Lu, G., Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum (2011) ACS Nano, 5 (12), pp. 9710-9717. , http://dx.doi.org/10.1021/nn203160n Jung, I., Dikin, D.A., Piner, R.D., Ruoff, R.S., Tunable electrical conductivity of individual graphene oxide sheets reduced at ''low'' temperatures (2008) Nano Lett, 8 (12), pp. 4283-4287. , http://dx.doi.org/10.1021/nl8019938 Yan, J.-A., Xian, L., Chou, M.Y., Structural and electronic properties of oxidized graphene (2009) Phys Rev Lett, 103, p. 086802. , http://dx.doi.org/10.1103/PhysRevLett.103.086802 Balog, R., Jørgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Bandgap opening in graphene induced by patterned hydrogen adsorption (2010) Nat Mater, 9, pp. 315-319. , http://dx.doi.org/10.1038/NMAT2710 Schniepp, H.C., Li, J.-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Functionalized single graphene sheets derived from splitting graphite oxide (2006) J Phys Chem B, 110 (17), pp. 8535-8539. , http://dx.doi.org/10.1021/jp060936f Park, S., Ruoff, R.S., Chemical methods for the production of graphenes (2009) Nat Nanotechnol, 4, pp. 217-224. , http://dx.doi.org/10.1038/nnano.2009.58 Gao, W., Alemany, L.B., Ci, L., Ajayan, P.M., New insights into the structure and reduction of graphite oxide (2009) Nat Chem, 1, pp. 403-408. , http://dx.doi.org/10.1038/NCHEM.281 Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., Controlled, stepwise reduction and band gap manipulation of graphene oxide (2012) J Phys Chem Lett, 3 (8), pp. 986-991. , http://dx.doi.org/10.1021/jz300096t Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Improved synthesis of graphene oxide (2010) ACS Nano, 4 (8), pp. 4806-4814. , http://dx.doi.org/10.1021/nn1006368 Fan, Z.-J., Kai, W., Yan, J., Wei, T., Zhi, L.-J., Feng, J., Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide (2011) ACS Nano, 5 (1), pp. 191-198. , http://dx.doi.org/10.1021/nn102339t Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., Chabal, Y.J., Unusual infrared-absorption mechanism in thermally reduced graphene oxide (2010) Nat Mater, 9, pp. 840-845. , http://dx.doi.org/10.1038/nmat2858 Tian, H., Xie, D., Yang, Y., Ren, T.L., Zhang, G., Wang, Y.F., A novel solid-state thermal rectifier based on reduced graphene oxide (2012) Sci Rep, 2, p. 523. , http://dx.doi.org/10.1038/srep00523 Xiao, N., Dong, X., Song, L., Liu, D., Tay, Y., Wu, S., Enhanced thermopower of graphene films with oxygen plasma treatment (2011) ACS Nano, 5 (4), pp. 2749-2755. , http://dx.doi.org/10.1021/nn2001849 Eda, G., Lin, Y.Y., Miller, S., Chen, C.W., Su, W.F., Chhowalla, M., Transparent and conducting electrodes for organic electronics from reduced graphene oxide (2008) Appl Phys Lett, 92, p. 233305. , http://dx.doi.org/10.1063/1.2937846 Eda, G., Fanchini, G., Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material (2008) Nat Nanotechnol, 3, pp. 270-274. , http://dx.doi.org/10.1038/nnano.2008.83 Wang, L., Lee, K., Sun, Y.-Y., Lucking, M., Chen, Z., Zhao, J.J., Graphene oxide as an ideal substrate for hydrogen storage (2009) ACS Nano, 3 (10), pp. 2995-3000. , http://dx.doi.org/10.1021/nn900667s Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Preparation and characterization of graphene oxide paper (2007) Nat (London), 448, pp. 457-460. , http://dx.doi.org/10.1038/nature06016 Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Functionalized graphene sheets for polymer nanocomposites (2008) Nat Nanotechnol, 3, pp. 327-331. , http://dx.doi.org/10.1038/nnano.2008.96 Vinod, S., Tiwary, C.S., Autreto, P.A.S., Taha-Tijerina, J., Ozden, S., Chipara, A.C., Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers (2014) Nat Commun, 5, p. 4541. , http://dx.doi.org/10.1038/ncomms5541 Boukhvalov, D.W., Katsnelson, M.I., Modeling of graphite oxide (2008) J Am Chem Soc, 130 (32), pp. 10697-10701. , http://dx.doi.org/10.1021/ja8021686 Lahaye, R.J.W.E., Jeong, H.K., Park, C.Y., Lee, Y.H., Density functional theory study of graphite oxide for different oxidation levels (2009) Phys Rev B, 79, p. 125435. , http://dx.doi.org/10.1103/PhysRevB.79.125435 Wang, L., Sun, Y.Y., Lee, K., West, D., Chen, Z.F., Zhao, J.J., Stability of graphene oxide phases from first-principles calculations (2010) Phys Rev B, 82, p. 161406R. , http://dx.doi.org/10.1103/PhysRevB.82.161406 Lu, N., Yin, D., Li, Z., Yang, J., Structure of graphene oxide: Thermodynamics versus kinetics (2011) J Phys Chem C, 115 (24), pp. 11991-11995. , http://dx.doi.org/10.1021/jp204476q Liu, L., Wang, L., Gao, J., Zhao, J., Gao, X., Chen, Z., Amorphous structural models for graphene oxides (2012) Carbon, 50, pp. 1690-1698. , http://dx.doi.org/10.1016/j.carbon.2011.12.014 Kim, S., Zhou, S., Hu, Y., Acik, M., Chabal, Y.J., Berger, C., Roomtemperature metastability of multilayer graphene oxide films (2012) Nat Mater, 11, pp. 544-549. , http://dx.doi.org/10.1038/nmat3316 Huang, B., Xiang, H., Xu, Q., Wei, S.-H., Overcoming the phase inhomogeneity in chemically functionalized graphene: The case of graphene oxides (2013) Phys Rev Lett, 110, p. 085501. , http://dx.doi.org/10.1103/PhysRevLett.110.085501 Zhou, S., Bongiorno, A., Origin of the chemical and kinetic stability of graphene oxide (2013) Sci Rep, 3, p. 2484. , http://dx.doi.org/10.1038/srep02484 Andremkhoyan, K., Contryman, A.W., Silcox, J., Stewart, D.A., Eda, G., Mattevi, C., Atomic and electronic structure of graphene-oxide (2009) Nano Lett, 9 (3), pp. 1058-1063. , http://dx.doi.org/10.1021/nl8034256 Saxena, S., Tyson, T.A., Shukla, S., Negusse, E., Chen, H., Bai, J., Investigation of structural and electronic properties of graphene oxide (2011) Appl Phys Lett, 99, p. 013104. , http://dx.doi.org/10.1063/1.3607305 Lee, G., Lee, B., Kim, J., Cho, K., Ozone adsorption on graphene: Ab initio study and experimental validation (2009) J Phys Chem C, 113 (32), pp. 14225-14229. , http://dx.doi.org/10.1021/jp904321n Yamaguchi, H., Murakami, K., Eda, G., Fujita, T., Guan, P., Wang, W., Field emission from atomically thin edges of reduced graphene oxide (2011) ACS Nano, 5 (6), pp. 4945-4952. , http://dx.doi.org/10.1021/nn201043a Xu, Z., Xue, K., Engineering graphene by oxidation: A firstprinciples study (2010) Nanotechnology, 21, p. 045704. , http://dx.doi.org/10.1088/0957-4484/21/4/045704 Lee, G., Cho, K., Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation (2009) Phys Rev B, 79, p. 165440. , http://dx.doi.org/10.1103/PhysRevB.79.165440 Lee, G., Kim, K.S., Cho, K., Theoretical study of the electron transport in graphene with vacancy and residual oxygen defects after high-temperature reduction (2011) J Phys Chem C, 115 (19), pp. 9719-9725. , http://dx.doi.org/10.1021/jp111841w Acik, M., Lee, G., Mattevi, C., Pirkle, A., Wallace, R.M., Chhowalla, M., The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy (2011) J Phys Chem C, 115 (40), pp. 19761-19781. , http://dx.doi.org/10.1021/jp2052618 Gong, C., Acik, M., Abolfath, R.M., Chabal, Y., Cho, K., Graphitization of graphene oxide with ethanol during thermal reduction (2012) J Phys Chem C, 116 (18), pp. 9969-9979. , http://dx.doi.org/10.1021/jp212584t Abolfath, R., Cho, K., Computational studies for reduced graphene oxide in hydrogen-rich environment (2012) J Phys Chem A, 116 (7), pp. 1820-1827. , http://dx.doi.org/10.1021/jp2107439 Srinivasan, S.G., Van Duin, A.C.T., Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field (2011) J Phys Chem A, 115 (46), pp. 13269-13280. , http://dx.doi.org/10.1021/jp207179x Bagri, A., Mattevi, C., Acik, M., Chabal, Y.J., Chhowalla, M., Shenoy, V.B., Structural evolution during the reduction of chemically derived graphene oxide (2010) Nat Chem, 2, pp. 581-587. , http://dx.doi.org/10.1038/nchem.686 Suk, J.W., Piner, R.D., An, J., Ruoff, R.S., Mechanical properties of monolayer graphene oxide (2010) ACS Nano, 4 (11), pp. 6557-6564. , http://dx.doi.org/10.1021/nn101781v Medhekar, N.V., Ramasubramaniam, A., Ruoff, R.S., Shenoy, V.B., Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties (2010) ACS Nano, 4 (4), pp. 2300-2306. , http://dx.doi.org/10.1021/nn901934u Fonseca, A.F., Lee, G., Borders, T.L., Zhang, H., Kemper, T.W., Shan, T.R., Reparameterization of the REBO-CHO potential for graphene oxide molecular dynamics simulation (2011) Phys Rev B, 84, p. 075460. , http://dx.doi.org/10.1103/PhysRevB.84.075460 Zhang, H., Fonseca, A.F., Cho, K., Tailoring thermal transport property of graphene through oxygen functionalization (2014) J Phys Chem C, 118 (3), pp. 1436-1442. , http://dx.doi.org/10.1021/jp4096369 Mu, X., Wu, X., Zhang, T., Go, D.B., Luo, T., Thermal transport in graphene oxide-From ballistic extreme to amorphous limit (2014) Sci Rep, 4, p. 3909. , http://dx.doi.org/10.1038/srep03909 Lin, S., Buehler, M.J., Thermal transport in monolayer graphene oxide: Atomistic insights into phonon engineering through surface chemistry (2014) Carbon, 77, pp. 351-359. , http://dx.doi.org/10.1016/j.carbon.2014.05.038 Ni, B., Lee, K.-H., Sinnott, S.B., A reactive empirical bond order (REBO) potential for hydrocarbon-oxygen interactions (2004) J Phys: Condens Matter, 16, pp. 7261-7275. , http://dx.doi.org/10.1088/0953-8984/16/41/008 Chenoweth, K., Van Duin, A.C.T., Goddard, W.A., III, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation (2008) J Phys Chem A, 112 (5), pp. 1040-1053. , http://dx.doi.org/10.1021/jp709896w Hummers, W.S., Offeman, R.E., Preparation of graphitic oxide (1958) J Am Chem Soc, 80 (6). , http://dx.doi.org/10.1021/ja01539a017.1339-1339 Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., The chemistry of graphene oxide (2010) Chem Soc Rev, 39, pp. 228-240. , http://dx.doi.org/10.1039/B917103G Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., Evolution of surface functional groups in a series of progressively oxidized graphite oxides (2006) Chem Mater, 18 (11), pp. 2740-2749. , http://dx.doi.org/10.1021/cm060258+ Lerf, A., He, H., Riedl, T., Forster, M., Klinowski, J., 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives (1997) Solid State Ionics, 101-103, pp. 857-862. , http://dx.doi.org/10.1016/S0167-2738(97)00319-6 He, H., Klinowski, J., Forster, M., Lerf, A., A new structural model for graphite oxide (1998) Chem Phys Lett, 287 (1-2), pp. 53-56. , http://dx.doi.org/10.1016/S0009-2614(98)00144-4 Lerf, A., He, H., Forster, M., Klinowski, J., Structure of graphite oxide revisited (1998) J Phys Chem B, 102 (23), pp. 4477-4482. , http://dx.doi.org/10.1021/jp9731821 Cassagneau, T., Guerin, F., Fendler, J.H., Preparation and characterization of ultrathin films layer-by-layer selfassembled from graphite oxide nanoplatelets and polymers (2000) Langmuir, 16 (18), pp. 7318-7324. , http://dx.doi.org/10.1021/la000442o Hontoria-Lucas, C., López-Peinado, A.J., De López-González, J.D., Rojas-Cervantes, M.L., Martín-Aranda, R.M., Study of oxygencontaining groups in a series of graphite oxides: Physical and chemical characterization (1995) Carbon, 33 (11), pp. 1585-1592. , http://dx.doi.org/10.1016/0008-6223(95)00120-3 Szabó, T., Tombácz, E., Illés, E., Dékány, I., Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides (2006) Carbon, 44 (3), pp. 537-545. , http://dx.doi.org/10.1016/j.carbon.2005.08.005 Shin, H.-J., Kim, K.K., Benayad, A., Yoon, S.-M., Park, H.K., Jung, I.-S., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance (2009) Adv Funct Mater, 19 (12), pp. 1987-1992 Zhu, J., Andres, C.M., Xu, J., Ramamoorthy, A., Tsotsis, T., Kotov, N.A., Pseudonegative thermal expansion and the state of water in graphene oxide layered assemblies (2012) ACS Nano, 6 (9), pp. 8357-8365. , http://dx.doi.org/10.1021/nn3031244 Reuter, K., Scheffler, M., Composition, structure, and stability of RuO2(110) as a function of oxygen pressure (2002) Phys Rev B, 65, p. 035406. , http://dx.doi.org/10.1103/PhysRevB.65.035406 CODATA recommended key values for thermodynamics, 1977. Report of the CODATA Task Group on key values of thermodynamics, 1977 (1978) J Chem Thermodyn, 10 (10), pp. 903-906. , http://dx.doi.org/10.1016/0021-9614(78)90050-2 Yan, J.-A., Chou, M.Y., Oxidation functional groups on graphene: Structural and electronic properties (2010) Phys Rev B, 82 (12), p. 125403. , http://dx.doi.org/10.1103/PhysRevB.82.125403 Jung, I., Field, D.A., Clark, N.J., Zhu, Y., Yang, D., Piner, R.D., Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption (2009) J Phys Chem C, 113 (43), pp. 18480-18486. , http://dx.doi.org/10.1021/jp904396j Lu, N., Huang, Y., Li, H., Li, Z., Yang, J., First principles nuclear magnetic resonance signatures of graphene oxide (2010) J Chem Phys, 133, p. 034502. , http://dx.doi.org/10.1063/1.3455715