Artículos de revistas
Clonostachys Rosea Bafc3874 As A Sclerotinia Sclerotiorum Antagonist: Mechanisms Involved And Potential As A Biocontrol Agent
Registro en:
Journal Of Applied Microbiology. , v. 110, n. 5, p. 1177 - 1186, 2011.
13645072
10.1111/j.1365-2672.2011.04970.x
2-s2.0-79953732794
Autor
Rodriguez M.A.
Cabrera G.
Gozzo F.C.
Eberlin M.N.
Godeas A.
Institución
Resumen
Aims: To establish the modes of action of the antagonistic fungal strain Clonostachys rosea BAFC3874 isolated from suppressive soils against Sclerotinia sclerotiorum and to determine its potential as a biocontrol agent. Methods and Results: The antagonistic activity of C. rosea BAFC3874 was determined in vitro by dual cultures. The strain effectively antagonized S. sclerotiorum in pot-grown lettuce and soybean plants. Antifungal activity assays of C. rosea BAFC3874 grown in culture established that the strain produced antifungal compounds against S. sclerotiorum associated with secondary metabolism. High mycelial growth inhibition coincided with sclerotia production inhibition. The C. rosea strain produced a microheterogeneous mixture of peptides belonging to the peptaibiotic family. Moreover, mycoparasitism activity was observed in the dual culture. Conclusions: Clonostachys rosea strain BAFC3874 was proved to be an effective antagonist against the aggressive soil-borne pathogen S. sclerotiorum in greenhouse experiments. The main mechanisms involve peptaibiotic metabolite production and mycoparasitism activity. Significance and Impact of the Study: Clonostachys rosea BAFC3874 may be a good fungal biological control agent against S. sclerotiorum. In addition, we were also able to isolate and identify peptaibols, an unusual family of compounds in this genus of fungi. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology. 110 5 1177 1186 Adams, P.B., Ayers, W.A., Ecology of Sclerotinia species (1979) Phytopathology, 69, pp. 896-899 Altomare, C., Norvell, W.A., Björkman, T., Harman, G.E., Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22 (1999) Appl Environ Microbiol, 65, pp. 2926-2933 Aryantha, I.N.P., Guest, D.I., Mycoparasitic and antagonistic inhibition on Phytophthora cinnamomi rands by microbial agents isolated from manure compost (2006) Plant Pathol J, 5, pp. 291-298 Barakat, R.M., Al-Mahareeq, F., AL-Masri, M., Biological control of Sclerotium rolfsii by using indigenous Trichoderma spp. isolates from Palestine (2006) Hebron Univ Res J, 2, pp. 27-47 Bennett, A.J., Whipps, J.M., Beneficial microorganism survival on seed, roots and in rhizosphere soil following application to seed during drum priming (2008) Biol Control, 44, pp. 349-361 Boland, G.J., Hall, R., Index of plant hosts of Sclerotinia sclerotiorum (1994) Can J Plant Pathol, 16, pp. 93-108 Butler, M.J., Day, A.W., Henson, J.M., Money, N.P., Pathogenic properties of fungal melanins (2001) Mycologia, 93, pp. 1-8 Butt, T.M., Jackson, C., Magan, M., Introduction-fungal biological control agents: progress, problems and potential (2001) Fungi as Biocontrol Agents: Progress, Problems and Potential, pp. 1-8. , ed. Butt, T., Jackson, C. and Magan, N. Southampton and Cranfield, UK: University of Wales Chikanishi, T., Hasumi, K., Harada, T., Kawasaki, N., Endo, A., Clonostachin, a novel peptaibol that inhibits platelet aggregation (1996) J Antibiot, 50, pp. 105-110 Daniel, J.F., Rodrigues Filho, E., Peptaibols of Trichoderma (2007) Nat Prod Rep, 24, pp. 1128-1141 Degenkolb, T., Gräfenhan, T., Nirenberg, H.I., Gams, W., Brückner, H., Trichoderma brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics) (2006) J Agric Food Chem, 54, pp. 7047-7061 Degenkolb, T., Kirschbaum, J., Brückner, N., New sequences, constituents, and producers of peptaibiotics: an updated review (2007) Chem Biodivers, 4, pp. 1052-1067 Dennis, C., Webster, J., Antagonistic properties of species-groups of Trichoderma I. Production of non-volatile antibiotics (1971) Mycol Res, 57, pp. 25-39 Dennis, C., Webster, J., Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics (1971) Mycol Res, 57, pp. 41-48 Domsch, K.H., Gams, W., Anderson, T.H., (1980) Compendium of Soil Fungi, 1. , London, UK: Academic Press Ervio, L.R., Halkilahti, A.M., Pohjakallio, O., The survival in soil of Sclerotinia species and their ability to form mycelia (1994) Adv Front Plant Sci, 8, pp. 121-133 Fuhrmann, J.J., Isolation of microorganisms producing antibiotics (1994) Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties, pp. 379-403. , In Soil Science Society of America Book Series ed. Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A. and Wollum, A. Madison, WI, USA: Soil Science Society of America pp: 1121 Gromadzka, K., Chelkowski, J., Popiel, D., Kachlicki, P., Kostecki, M., Golinski, P., Solid substrate bioassay to evaluate the effect of Trichoderma and Clonostachys on the production of zearalenone by Fusarium species (2009) World Mycotoxin J, 2, pp. 45-52 Hadacek, F., Greger, H., Testing of antifungal natural products: methodologies, comparability of results and assay choice (2000) Phytochem Anal, 11, pp. 137-147 Harish, S., Manjula, K., Podile, A.R., Fusarium udum is resistant to the mycolytic activity of a biocontrol strain of Bacillus subtilis AF 1 (1998) FEMS Microbiol Ecol, 25, pp. 385-390 Harman, G., Petzoldt, R., Comis, A., Jie Chen, J., Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola (2004) Phytopathology, 94, pp. 147-153 Hermosa, M.R., Grondona, I., Iturriaga, E.A., Diaz-Minguez, J.M., Castro, C., Monte, E., Garcia-Acha, I., Molecular characterization and identification of biocontrol isolates of Trichoderma spp (2000) Appl Environ Microbiol, 66, pp. 1890-1898 Innocenti, G., Roberti, R., Montanari, M., Zakrisson, E., Efficacy of microorganisms antagonistic to Rhizoctonia cerealis and their cell wall degrading enzymatic activities (2003) Mycol Res, 107, pp. 421-427 Jackson, A.M., Whipps, J.M., Lynch, J.M., In vitro screening for the identification of potential biocontrol agents of Allium white rot (1991) Mycol Res, 95, pp. 430-434 Jaworski, A., Brückner, H., New sequences and new fungal producers of peptaibol antibiotics antiamoebins (2000) J Pept Sci, 6, pp. 149-167 Keinath, A.P., Fravel, D.R., Papavizas, G.C., Potential of Gliocladium roseum for biocontrol of Verticillium dahliae (1991) Phytopathology, 81, pp. 644-648 Knudsen, I.M.B., Hockenhull, J., Jensen, D.F., Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: effects of selected fungal antagonists on growth and yield components (1995) Plant Pathol, 44, pp. 467-477 Kohn, L.M., Delimitation of the economically important plant pathogenic Sclerotinia species (1979) Phytopathology, 69, pp. 873-886 Le Tourneau, D., Morphology, cytology and physiology of Sclerotinia species in culture (1979) Phytopathology, 69, pp. 887-890 Mejía, L.C., Rojas, E.I., Maynard, Z., Van Bael, S., Arnold, A.E., Hebbar, P., Samuels, G.J., Robbins, N., Endophytic fungi as biocontrol agents of Theobroma cacao pathogens (2008) Biol Control, 46, pp. 4-14 Melgarejo, P., Carrillo, R., Sagasta, E.M., Mycoflora of peach twigs and flowers and its possible significance in biological control of Monilia laxa (1985) Mycol Res, 85, pp. 313-317 Nobre, S.A.M., Maffia, L.A., Mizubuti, E.S.G., Cota, L.V., Dias, A.P.S., Selection of Clonostachys rosea isolates from Brazilian ecosystems effective in controlling Botrytis cinerea (2005) Biol Control, 34, pp. 132-143 Nosanchuk, J.D., Casadevall, A., The contribution of melanin to microbial pathogenesis (2003) Cell Microbiol, 5, pp. 203-223 Roberti, R., De Vero, L., Pisiand, A., Cesari, A., Biological control of wheat foot rot by antagonistic fungi and their modes of action (2001) IOBC/WPRS Bull, 24, pp. 13-16 Roberti, R., Veronesi, A.R., Cesari, A., Cascote, A., Di Berardino, I., Bertini, L., Caruso, C., Induction of PR proteins and resistance by the biocontrol agent Clonostachys rosea in wheat plants infected with Fusarium culmorum (2008) Plant Sci, 175, pp. 339-347 Rodríguez, M.A., (2004) Hongos del suelo antagonistas de Sclerotinia sclerotiorum. Selección y estudio de potenciales agentes de biocontrol, , Tesis Doctoral. Buenos Aires, Argentina: Departamento de Biodiversidad y Biología Experimental, FCEyN, UBA Schirmböck, M., Lorito, M., Wang, Y.L., Hayes, C.K., Arisan-Atac, C., Scala, F., Harman, G.E., Kubicek, C.P., Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi (1994) Appl Environ Microbiol, 60, pp. 4364-4370 Schroers, H.J., Samuels, G.J., Seifert, K.A., Gams, W., Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi (1999) Mycologia, 91, pp. 365-385 Shoresh, M., Harman, G.E., Mastouri, F., Induced systemic resistance and plant responses to fungal biocontrol agents (2010) Annu Rev Phytopathol, 48, pp. 1-23 Singh, S.-B., Herath, K., Guan, Z., Zink, D.L., Dombrowski, D.A., Polishook, J.D., Silverman, K.C., Lingham, R.B., Integramides A and B, Two novel non-nibosomal linear peptides containing nine Cr-Methyl amino acids produced by fungal fermentations that are inhibitors of HIV-1 integrase (2002) Org Lett, 4, pp. 1431-1434 Sutton, J.C., Li, D.W., Peng, G., Yu, H., Zhang, P., Valdebeneito-Sanhueza, R.M., Gliocladium roseum: a versatile adversary of Botrytis cinerea in crops (1997) Plant Dis, 81, pp. 316-328 Vey, A., Hoag, I.R.E., Butt, T.M., Toxic metabolites of fungal biocontrol agents (2001) Fungi as Biocontrol Agents: Progress, Problems and Potential, p. 311. , ed. Butt, T.M., Jackson, C. and Magan, N. Bristol, USA: CAB International Publishing Viterbo, A., Wiest, A., Brotman, Y., Chet, I., Kenerley, C., The 18mer peptaibols from Trichoderma virens elicit plant defence responses (2007) Mol Plant Pathol, 8, pp. 737-746 Whipps, J.M., Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi (1987) New Phytol, 107, pp. 127-142 Whipps, J.M., Microbial interactions and biocontrol in the rhizosphere (2001) J Exp Bot, 52, pp. 487-511 Whipps, J.M., Magan, N., Effects of nutrient status and water potential of media on fungal growth and antagonist-pathogen interactions (1986) EPPO Bulletin, 17, pp. 581-591 Yedidia, I., Srivastva, A.K., Kapulnik, Y., Chet, I., Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants (2001) Plant Soil, 235, pp. 235-242 Zafari, D., Koushki, M.M., Bazgir, E., Biocontrol evaluation of wheat take-all disease by Trichoderma screened isolates (2008) Afr J Biotechnol, 7, pp. 3653-3659 Zahir, Z.A., Arshad, M., Frankenberger, W.T., Plant growth promoting rhizobacteria: applications and perspectives in agriculture (2004) Adv Agron, 81, pp. 97-168 Zazzerini, A., Tosi, L., Antagonistic activity of fungi isolated from sclerotia of Sclerotinia sclerotiorum (1985) Plant Pathol, 34, pp. 415-421