Actas de congresos
Thermal Precipitation Of Silver Nanoparticles And Thermoluminescence In Tellurite Glasses
Registro en:
Optical Materials. , v. 33, n. 12, p. 1884 - 1891, 2011.
9253467
10.1016/j.optmat.2011.03.006
2-s2.0-80052965323
Autor
Giehl J.M.
Pontuschka W.M.
Barbosa L.C.
Chillcce E.F.
Da Costa Z.M.
Alves S.
Institución
Resumen
Silver metal and/or oxide precipitation of nanoparticles in thermally treated Ag-doped tellurite glasses was studied by optical absorption (OA) and transmission electron microscopy (TEM). The Lorentzian adjusted silver nanoparticles plasma resonance OA band was compared to the Drude model approach. The silver nanoparticles size distribution on the surface rather than in the bulk was determined by TEM. A model for the metallic silver precipitation is proposed. The characterization of the formation of silver nanoparticles was carried out with differential thermal analysis (DTA) to determine the glass transition temperature (Tg) and of crystallization (Tc). Previously γ-irradiated samples exhibited thermoluminescence (TL) peaks and the defect centers TeOHC, NBOHC and TeEC were identified by electron paramagnetic resonance (EPR), but no Ag0 signal was detected. The silver nanoparticles are known to introduce desired third-order optical nonlinearities in the composites, at wavelengths close to the characteristic surface-plasmon resonance of the metal precipitates. An increase of the glass density and refractive index with increasing AgNO3 content was observed. © 2011 Elsevier B.V. All rights reserved. 33 12 1884 1891 Yano, T., Watanabe, A., (1971) J. Appl. Phys., 42, p. 3674 Pontuschka, W.M., Barbosa, L.C., (2004) Non-Crystalline Materials for Optoelectronics, pp. 363-392. , G. Lucovsky, M.A. Popescu, INOE Publishing House Bucharest Tanabe, S., (2006) J. Alloys Compd., 675, p. 408 Durga, D.K., Yadagiri Reddy, P., Veeraiah, N., (2002) J. Lumin., 99, p. 53 Venkateswara Rao, G., Veeraiah, N., Yadagiri Reddy, P., (2003) Opt. Mater., 22, p. 295 Venkateswara Rao, G., Yadagiri Reddy, P., Veeraiah, N., (2002) Mater. Lett., 57, p. 403 Rai, V.K., Menezes, L.S., Araújo, C.B., Kassab, L.R.P., Da Silva, D.M., Kobayashi, R.A., (2008) J. Appl. Phys., 103. , 093526-1 Yamane, M., Asahara, Y., (2000) Glasses for Photonics, , Cambridge University Press Cambridge Strohhöfer, C., Polman, A., (2000) J. Appl. Phys., 81, p. 1414 Kassab, L.R.P., De Araújo, C.B., Kobayashi, R.A., Pinto, R.A., Da Silva, D.M., (2007) J. Appl. Phys., 102, p. 103515 Blondeau, J.Ph., Catan, F., Andreazza-Vignolle, C., Sbai, N., (2008) Plasmonics, 3, p. 65 Terashima, K., Kim, S.H., Yoko, T., (1995) J. Am. Ceram. Soc., 78, p. 1601 Giehl, J.M., Pontuschka, W.M., Barbosa, L.C., Ludwig, Z.M.C., (2010) J. Non-Cryst. Solids, 356, p. 1762 Houde-Walter, S.N., Inman, J.M., Dent, A.J., Greaves, G.N., (1993) J. Phys. Chem., 97, p. 9330 Messerschmidt, B., McIntire, B.L., Houde-Walter, S.N., (1996) J. Appl. Opt., 35, p. 5670 Mock, J.J., Barbic, M., Smith, D.R., Schultz, S., (2002) J. Chem. Phys., 116, p. 6755