Artículos de revistas
Insights Into The Structure And Function Of Fungal β-mannosidases From Glycoside Hydrolase Family 2 Based On Multiple Crystal Structures Of The Trichoderma Harzianum Enzyme
Registro en:
Febs Journal. Blackwell Publishing Ltd, v. 281, n. 18, p. 4165 - 4178, 2014.
1742464X
10.1111/febs.12894
2-s2.0-84909955528
Autor
Nascimento A.S.
Muniz J.R.C.
Aparicio R.
Golubev A.M.
Polikarpov I.
Institución
Resumen
Hemicellulose is an important part of the plant cell wall biomass, and is relevant to cellulosic ethanol technologies. β-Mannosidases are enzymes capable of cleaving nonreducing residues of β-d-mannose from β-d-mannosides and hemicellulose mannose-containing polysaccharides, such as mannans and galactomannans. β-Mannosidases are distributed between glycoside hydrolase (GH) families 1, 2, and 5, and only a handful of the enzymes have been structurally characterized to date. The only published X-ray structure of a GH family 2 mannosidase is that of the bacterial Bacteroides thetaiotaomicron enzyme. No structures of eukaryotic mannosidases of this family are currently available. To fill this gap, we set out to solve the structure of Trichoderma harzianum GH family 2 β-mannosidase and to refine it to 1.9-Å resolution. Structural comparisons of the T. harzianum GH2 β-mannosidase highlight similarities in its structural architecture with other members of GH family 2, reveal the molecular mechanism of β-mannoside binding and recognition, and shed light on its putative galactomannan-binding site. 281 18 4165 4178 Schubert, C., Can biofuels finally take center stage? (2006) Nat Biotechnol, 24, pp. 777-784 Satyanarayana, K.G., Guimarães, J.L., Wypych, F., Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications (2007) Comp Part A Appl Sci Manufacturing, 38, pp. 1694-1709 Scheller, H.V., Ulvskov, P., Hemicelluloses (2010) Annu Rev Plant Biol, 61, pp. 263-289 Eneyskaya, E.V., Sundqvist, G., Golubev, A.M., Ibatullin, F.M., Ivanen, D.R., Shabalin, K.A., Brumer, H., Kulminskaya, A.A., Transglycosylating and hydrolytic activities of the beta-mannosidase from Trichoderma reesei (2009) Biochimie, 91, pp. 632-638 Shi, H., Huang, Y., Zhang, Y., Li, W., Li, X., Wang, F., High-level expression of a novel thermostable and mannose-tolerant β-mannosidase from Thermotoga thermarum DSM 5069 in Escherichia coli (2013) BMC Biotechnol, 13, p. 83 Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., Henrissat, B., The carbohydrate-active enzymes database (CAZy) in 2013 (2014) Nucleic Acids Res, 42, pp. D490-D495 De Castro, A.M., Pedro, K.C., Da Cruz, J.C., Ferreira, M.C., Leite, S.G., Pereira, N., Trichoderma harzianum IOC-4038: A promising strain for the production of a cellulolytic complex with significant β-glucosidase activity from sugarcane bagasse cellulignin (2010) Appl Biochem Biotechnol, 162, pp. 2111-2122 Maeda, R., Serpa, V., Rocha, V., Mesquita, R., Santa Anna, L., De Castro, A., Driemeier, C., Polikarpov, I., Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases (2011) Process Biochem, 46, pp. 1196-1201 Horta, M.A., Vicentini, R., Delabona, P.A.S., Laborda, P., Crucello, A., Freitas, S., Kuroshu, R.M., Souza, A.P., Transcriptome profile of Trichoderma harzianum IOC-3844 induced by sugarcane bagasse (2014) PLoS One, 9, p. e88689 Kulminskaya, A., Eneiskaya, E., Isaeva-Ivanova, L., Savel'Ev, A., Sidorenko, I., Shabalin, K., Golubev, A., Neustroev, K., Enzymatic activity and beta-galactomannan binding property of beta-mannosidase from Trichoderm reesei (1999) Enzyme Microb Technol, 25, pp. 372-377 Aparicio, R., Fischer, H., Scott, D.J., Verschueren, K.H., Kulminskaya, A.A., Eneiskaya, E.V., Neustroev, K.N., Polikarpov, I., Structural insights into the beta-mannosidase from T. Reesei obtained by synchrotron small-angle X-ray solution scattering enhanced by X-ray crystallography (2002) Biochemistry, 41, pp. 9370-9375 Fenwick, R.B., Van Den Bedem, H., Fraser, J.S., Wright, P.E., Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR (2014) Proc Natl Acad Sci USA, 111, pp. E445-E454 Burnley, B.T., Afonine, P.V., Adams, P.D., Gros, P., Modelling dynamics in protein crystal structures by ensemble refinement (2012) Elife, 1, p. e00311 Levin, E.J., Kondrashov, D.A., Wesenberg, G.E., Phillips, G.N., Ensemble refinement of protein crystal structures: Validation and application (2007) Structure, 15, pp. 1040-1052 Ambrosio, A.L., Nonato, M.C., De Araújo, H.S., Arni, R., Ward, R.J., Ownby, C.L., De Souza, D.H., Garratt, R.C., A molecular mechanism for Lys49-phospholipase A2 activity based on ligand-induced conformational change (2005) J Biol Chem, 280, pp. 7326-7335 Lee, W.H., Perles, L.A., Nagem, R.A., Shrive, A.K., Hawkins, A., Sawyer, L., Polikarpov, I., Comparison of different crystal forms of 3-dehydroquinase from Salmonella typhi and its implication for the enzyme activity (2002) Acta Crystallogr D Biol Crystallogr, 58, pp. 798-804 Jacobson, R.H., Zhang, X.J., Dubose, R.F., Matthews, B.W., Three-dimensional structure of beta-galactosidase from E. Coli (1994) Nature, 369, pp. 761-766 Skálová, T., Dohnálek, J., Spiwok, V., Lipovová, P., Vondrácková, E., Petroková, H., Dusková, J., Hasek, J., Cold-active beta-galactosidase from Arthrobacter sp. C2-2 forms compact 660 kDa hexamers: Crystal structure at 1.9A resolution (2005) J Mol Biol, 353, pp. 282-294 Tailford, L.E., Money, V.A., Smith, N.L., Dumon, C., Davies, G.J., Gilbert, H.J., Mannose foraging by Bacteroides thetaiotaomicron: Structure and specificity of the beta-mannosidase, BtMan2A (2007) J Biol Chem, 282, pp. 11291-11299 Tailford, L.E., Offen, W.A., Smith, N.L., Dumon, C., Morland, C., Gratien, J., Heck, M.P., Vasella, A., Structural and biochemical evidence for a boat-like transition state in beta-mannosidases (2008) Nat Chem Biol, 4, pp. 306-312 Offen, W.A., Zechel, D.L., Withers, S.G., Gilbert, H.J., Davies, G.J., Structure of the Michaelis complex of beta-mannosidase, Man2A, provides insight into the conformational itinerary of mannoside hydrolysis (2009) Chem Commun (Camb), 18, pp. 2484-2486 Krissinel, E., Henrick, K., Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions (2004) Acta Crystallogr D Biol Crystallogr, 60, pp. 2256-2268 Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.P., Davies, G., (1995) Proc Natl Acad Sci USA, 92, pp. 7090-7094 Holm, L., Rosenström, P., Dali server: Conservation mapping in 3D (2010) Nucleic Acids Res, 38, pp. W545-W549 Van Bueren, A.L., Ghinet, M.G., Gregg, K., Fleury, A., Brzezinski, R., Boraston, A.B., The structural basis of substrate recognition in an exo-beta-D-glucosaminidase involved in chitosan hydrolysis (2009) J Mol Biol, 385, pp. 131-139 Juers, D.H., Jacobson, R.H., Wigley, D., Zhang, X.J., Huber, R.E., Tronrud, D.E., Matthews, B.W., High resolution refinement of beta-galactosidase in a new crystal form reveals multiple metal-binding sites and provides a structural basis for alpha-complementation (2000) Protein Sci, 9, pp. 1685-1699 Wang, Y., Xiao, J., Suzek, T.O., Zhang, J., Wang, J., Bryant, S.H., PubChem: A public information system for analyzing bioactivities of small molecules (2009) Nucleic Acids Res, 37, pp. W623-W633 Dias, F.M., Vincent, F., Pell, G., Prates, J.A., Centeno, M.S., Tailford, L.E., Ferreira, L.M., Gilbert, H.J., Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A (2004) J Biol Chem, 279, pp. 25517-25526 Colussi, F., Serpa, V., Delabona, P.S., Manzine, L.R., Voltatodio, M.L., Alves, R., Mello, B.L., Golubev, A.M., Purification, and Biochemical and biophysical characterization of cellobiohydrolase i from Trichoderma harzianum IOC 3844 (2011) J Microbiol Biotechnol, 21, pp. 808-817 Aparicio, R., Eneiskaya, E.V., Kulminskaya, A.A., Savel'Ev, A.N., Golubev, A.M., Neustroev, K.N., Kobarg, J., Polikarpov, I., Crystallization and preliminary X-ray study of beta-mannosidase from Trichoderma reesei (2000) Acta Crystallogr D Biol Crystallogr, 56, pp. 342-343 Chakraborty, B.N., Chakraborty, U., Saha, A., Dey, P.L., Sunar, K., Molecular characterization of Trichoderma viride and Trichoderma harzianum isolated from soils of North Bengal based on rDNA markers and analysis of their PCR-RAPD profiles (2010) Global J Biotechnol Biochem, 5, pp. 55-61 Zerbino, D., Birney, E., Velvet: Algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Res, 18, pp. 821-829 Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y., Borodovsky, M., Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training (2008) Genome Res, 18, pp. 1979-1990 Guimaraes, B.G., Sanfelici, L., Neuenschwander, R.T., Rodrigues, F., Grizolli, W.C., Raulik, M.A., Piton, J.R., Polikarpov, I., The MX2 macromolecular crystallography beamline: A wiggler X-ray source at the LNLS (2009) J Synchrotron Radiat, 16, pp. 69-75 Kabsch, W., XDS (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 125-132 Evans, P.R., An introduction to data reduction: Space-group determination, scaling and intensity statistics (2011) Acta Crystallogr D Biol Crystallogr, 67, pp. 282-292 Sheldrick, G., Experimental phasing with SHELXC/D/E: Combining chain tracing with density modification (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 479-485 Pape, T., Schneider, T., HKL2MAP: A graphical user interface for macromolecular phasing with SHELX programs (2004) J Appl Crystallogr, 37, pp. 843-844 Adams, P., Afonine, P., Bunkoczi, G., Chen, V., Echols, N., Headd, J., Hung, L., Kunstleve, R., The Phenix software for automated determination of macromolecular structures (2011) Methods, 55, pp. 94-106 Langer, G., Cohen, S., Lamzin, V., Perrakis, A., Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 (2008) Nat Protocols, 3, pp. 1171-1179 Terwilliger, T., Grosse-Kunstleve, R., Afonine, P., Moriarty, N., Zwart, P., Hung, L., Read, R., Adams, P., Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard (2008) Acta Crystallogr D Biol Crystallogr, 64, pp. 61-69 Murshudov, G., Vagin, A., Dodson, E., Refinement of macromolecular structures by the maximum-likelihood method (1997) Acta Crystallogr D Biol Crystallogr, 53, pp. 240-255 Blanc, E., Roversi, P., Vonrhein, C., Flensburg, C., Lea, S., Bricogne, G., Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT (2004) Acta Crystallogr D Biol Crystallogr, 60, pp. 2210-2221 Emsley, P., Cowtan, K., Coot: Model-building tools for molecular graphics (2004) Acta Crystallogr D Biol Crystallogr, 60, pp. 2126-2132 McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., Phaser crystallographic software (2007) J Appl Crystallogr, 40, pp. 658-674 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF chimera - A visualization system for exploratory research and analysis (2004) J Comput Chem, 25, pp. 1605-1612 Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple amber force fields and development of improved protein backbone parameters (2006) Proteins Struct Funct Bioinformatics, 65, pp. 712-725 Bailey, S., The CCP4 suite - Programs for protein crystallography (1994) Acta Crystallogr D Biol Crystallogr, 50, pp. 760-763 O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R., Open Babel: An open chemical toolbox (2011) J Cheminform, 3, p. 33 Vaz De Lima, L.A., Nascimento, A.S., MolShaCS: A free and open source tool for ligand similarity identification based on Gaussian descriptors (2013) Eur J Med Chem, 59, pp. 296-303 Jones, D.R., Perttunen, C.D., Stuckman, B.E., Lipschitzian optimization without the Lipschitz constant (1993) J Optim Theory Appl, 79, pp. 157-181 Jhonson, S.G., The NLopt Nonlinear-optimization Package: The NLopt Nonlinear-optimization Package, , http://ab-initio.mit.edu/nlopt