Artículos de revistas
The Untiring Search For The Most Complete Proteome Representation: Reviewing The Methods
Registro en:
Briefings In Functional Genomics And Proteomics. , v. 7, n. 4, p. 312 - 321, 2008.
14739550
10.1093/bfgp/eln023
2-s2.0-53249129088
Autor
De Souza D.M.
Oliveira B.M.
Castro-Dias E.
Winck F.V.
Horiuchi R.S.O.
Baldasso P.A.
Caetano H.T.
Pires N.K.D.
Marangoni S.
Novello J.C.
Institución
Resumen
Proteomic research has proved valuable for understanding the molecular mechanisms of biological processes, as well as in the search for biomarkers for a variety of diseases which lack a molecular diagnostic. While several new approaches are being developed, two-dimensional (2-DE) gel electrophoresis is still one of the most commonly used techniques, despite its many limitations. However, for biomarker research, 2-DE gel electrophoresis alone does not fulfill the necessary pre-requisites. If such a technique is utilized exclusively, a great part of a given proteome remains unseen. Therefore, very precise and sensitive techniques are needed. Here, we present a brief review of known methodologies that try to overcome the limitations of conventional proteome analysis as well as their respective advantages and limitations. © The Author 2008. Published by Oxford University Press. All rights reserved. 7 4 312 321 Wilkins, M.R., Sanchez, J.C., Gooley, A.A., Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it (1996) Biotechnol Genet Eng Rev, 13, pp. 19-50 Klose, J., Nock, C., Herrmann, M., Genetic analysis of the mouse brain proteome (2002) Nat Genet, 30, pp. 385-393 Lasonder, E., Ishihama, Y., Andersen, J.S., Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry (2002) Nature, 419, pp. 537-542 Uetz, P., Giot, L., Cagney, G., A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae (2000) Nature, 403, pp. 623-627 Ito, T., Chiba, T., Ozawa, R., A comprehensive two-hybrid analysis to explore the yeast protein interactome (2001) Proc Natl Acad Sci USA, 98, pp. 4569-4574 Norin, M., Sundström, M., Structural proteomics: Developments in structure-to-function predictions (2002) Trends Biotechnol, 20, pp. 79-84 Sali, A., Glaeser, R., Earnest, T., Baumeister, W., From words to literature in structural proteomics (2003) Nature, 422, pp. 216-225 Gygi, S.P., Corthals, G.L., Zhang, Y., Evaluation of two-dimensional gel electrophoresis based proteome analysis tecnology (2000) Proc Natl Acad Sci USA, 97, pp. 9390-9395 Washburn MP, Wolters D, Yates JR, 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001;19:242-7Wu, L., Han, D.K., Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics (2006) Expert Rev Proteomics, 3, pp. 611-619 Futcher, B., Latter, G.I., Monardo, P., A sampling of the yeast proteome (1999) MCB, 19, pp. 7357-7376 Badock, V., Steinhusen, U., Bommert, K., Prefractionation of protein samples for proteome analysis using reversed-phase high-performance liquid chromatography (2001) Electrophoresis, 22, pp. 2856-2864 Bjellqvist, B., Ek, K., Righetti, P.G., Isoelectric focusing in immobilized pH gradients: Principle, methodology and some applications (1982) J Biochem Biophys Methods, 6, pp. 317-339 Martins, D., Astua-Monge, G., Coletta-Filho, H.D., Absence of classical heat shock response in the citrus pathogen Xylella fastidiosa (2007) Curr Microbiol, 54, pp. 119-123 Chen, F., Yuan, Y., Li, Q., Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight (2007) Proteomics, 7, pp. 1529-1539 Qin, G., Tian, S., Chan, Z., Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum: Analysis based on proteomics approach (2007) Mol Cell Proteomics, 6, pp. 425-438 Pei, H., Zhu, H., Zeng, S., Proteome analysis and tissue microarray for profiling protein markers associated with lymph node metastasis in colorectal cancer (2007) J Proteome Res, 6, pp. 2495-2501 Sultana, R., Boyd-Kimball, D., Cai, J., Proteomics analysis of the Alzheimer's disease hippocampal proteome (2007) J Alzheimers Dis, 11, pp. 153-164 De Maio, A., Heat shock proteins: Facts, thoughts, and dreams (1999) Shock, 11, pp. 1-12 Righetti, P.G., Castagna, A., Herbert, B., How to bring the "unseen" proteome to the limelight via electrophoretic prefractionation techniques (2005) Biosci Rep, 25, pp. 3-17 Righetti, P.G., Boschetti, E., Lomas, L., Protein Equalizer Technology: The quest for a "democratic proteome (2006) Proteomics, 6, pp. 3980-3992 Galmarini, C.M., Galmarini, F.C., Multidrug resistance in cancer therapy: Role of the microenvironment (2003) Curr Opin Investig Drugs, 4, pp. 1416-1421 Rabilloud, T., Solubilization of proteins for electrophoretic analyses (1996) Electrophoresis, 17, pp. 813-829 Chevallet, M., Santoni, V., Poinas, A., New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis (1998) Electrophoresis, 11, pp. 1901-1909 Martins, D., Menezes de Oliveira, B., Dos Santos Farias, A., The use of ASB-14 in combination with CHAPS is the best for solubilization of human brain proteins for two-dimensional gel electrophoresis (2007) Brief Funct Genomic Proteomic, 6, pp. 70-75 Wildgruber, R., Harder, A., Obermaier, C., Towards higher resolution: Two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients (2000) Electrophoresis, 21, pp. 2610-2616 Fey, S.J., Larsen, P.M., 2D or not 2D. Two-dimensional gel electrophoresis (2001) Curr Opin Chem Biol, 5, pp. 26-33 Cordwell, S.J., Nouwens, A.S., Verrills, N.M., Subproteomics based upon protein cellular location and relative solubilities in conjunction with composite two-dimensional electrophoresis gels (2000) Electrophoresis, 21, pp. 1094-1103 Westbrook, J.A., Wheeler, J.X., Wait, R., The human heart proteome: Two-dimensional maps using narrow-range immobilised pH gradients (2006) Electrophoresis, 27, pp. 1547-1555 Westbrook, J.A., Yan, J.X., Wait, R., Zooming-in on the proteome: Very narrow-range immobilised pH gradients reveal more protein species and isoforms (2001) Electrophoresis, 22, pp. 2865-2871 Corthals, G.L., Nelson, P.S., Large-scale proteomics and its future impact on medicine (2001) Pharmacogenomics J, 1, pp. 15-19 Klose, J., Kobalz, U., Two-dimensional electrophoresis of proteins: An updated protocol and implications for a functional analysis of the genome (1995) Electrophoresis, 16, pp. 1034-1059 O'Farrell, P.Z., Goodman, H.M., O'Farrell, P.H., High resolution two-dimensional electrophoresis of basic as well as acidic proteins (1977) Cell, 12, pp. 1133-1141 Wittmann-Liebold, B., Graack, H.R., Pohl, T., Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry (2006) Proteomics, 6, pp. 4688-4703 Chahed, K., Kabbage, M., Hamrita, B., Detection of protein alterations in male breast cancer using two dimensional gel electrophoresis and mass spectrometry: The involvement of several pathways in tumorigenesis (2008) Clin Chim Acta, 388, pp. 106-114 Nowalk, A.J., Nolder, C., Clifton, D.R., Comparative proteome analysis of subcellular fractions from Borrelia burgdorferi by NEPHGE and IPG (2006) Proteomics, 6, pp. 2121-2134 Jung, E., Heller, M., Sanchez, J.C., Proteomics meets cell biology: The establishment of subcellular proteomes (2000) Electrophoresis, 21, pp. 3369-3377 Gerner, C., Sauermann, G., Nuclear matrix proteins specific for subtypes of human hematopoietic cells (1999) J Cell Biochem, 72, pp. 470-482 Neubauer, G., King, A., Rappsilber, J., Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex (1998) Nat Genet, 20, pp. 46-50 Wigge, P.A., Jensen, O.N., Holmes, S., Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ ionization (MALDI) mass spectrometry (1998) J Cell Biol, 141, pp. 967-977 Rout, M.P., Aitchison, J.D., Suprapto, A., The yeast nuclear pore complex: Composition, architecture, and transport mechanism (2000) J Cell Biol, 148, pp. 635-651 Rigaut, G., Shevchenko, A., Rutz, B., A generic protein purification method for protein complex characterization and proteome exploration (1999) Nat Biotechnol, 17, pp. 1030-1032 Havugimana, P.C., Wong, P., Emili, A., Improved proteomic discovery by sample pre-fractionation using dual-column ion-exchange high performance liquid chromatography (2007) J Chromatogr B Analyt Technol Biomed Life Sci, 847, pp. 54-61 Görg, A., Boguth, G., Kopf, A., Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two-dimensional gels (2002) Proteomics, 2, pp. 1652-1657 Solassol, J., Marin, P., Demettre, E., Proteomic detection of prostate-specific antigen using a serum fractionation procedure: Potential implication for new low-abundance cancer biomarkers detection (2005) Anal Biochem, 338, pp. 26-31 Martosella, J., Zolotarjova, N., Liu, H., High recovery HPLC separation of lipid rafts for membrane proteome analysis (2006) J Proteome Res, 5, pp. 1301-1312 Echan, L.A., Tang, H.Y., Ali-Khan, N., Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma (2005) Proteomics, 5, pp. 3292-3303 Zolotarjova, N., Martosella, J., Nicol, G., Differences among techniques for high-abundant protein depletion (2005) Proteomics, 5, pp. 3304-3313 Tanaka, Y., Akiyama, H., Kuroda, T., A novel approach and protocol for discovering extremely low-abundance proteins in serum (2006) Proteomics, 6, pp. 4845-4855 Björhall, K., Miliotis, T., Davidsson, P., Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples (2005) Proteomics, 5, pp. 307-317 Granger, J., Siddiqui, J., Copeland, S., Albumin depletion of human plasma also removes low abundance proteins including the cytokines (2005) Proteomics, 5, pp. 4713-4718 Veenstra, T.D., Conrads, T.P., Hood, B.L., Biomarkers: Mining the biofluid proteome (2005) Mol Cell Proteomics, 4, pp. 409-418 Fountoulakis, M., Juranville, J.F., Jiang, L., Depletion of the high-abundance plasma proteins (2004) AminoAcids, 27, pp. 249-259 Jmeian, Y., El Rassi, Z., Tandem affinity monolithic microcolumns with immobilized protein a, protein go,¢ and antibodies for depletion of high abundance proteins from serum samples: Integrated microcolumn-based fluidic system for simultaneous depletion and tryptic digestion (2007) J Proteome Res, 6, pp. 947-954 Gong, Y., Li, X., Yang, B., Different immunoaffinity fractionation strategies to characterize the human plasma proteome (2006) J Proteome Res, 5, pp. 1379-1387 Khan, A., Packer, N.H., Simple urinary sample preparation for proteomic analysis (2006) J Proteome Res, 5, pp. 2824-2838 Steinberg, T.H., Jones, L.J., Haugland, R.P., SYPRO orange and SYPRO red protein gel stains: One-step flourescent staining of denaturing gels for detection of nanogram levels of protein (1996) Anal Biochem, 239, pp. 223-237 Unlü, M., Morgan, M.E., Minden, J.S., Difference gel electrophoresis: A single gel method for detecting changes in protein extracts (1997) Electrophoresis, 18, pp. 2071-2077 Chan, H.L., Gharbi, S., Gaffney, P.R., Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis (2005) Proteomics, 5, pp. 2908-2926 Alban, A., David, S.O., Bjorkesten, L., A novel experimental design for comparative two-dimensional gel analysis: Two-dimensional difference gel electrophoresis incorporating a pooled internal standard (2003) Proteomics, 3, pp. 36-44 Marouga, R., David, S., Hawkins, E., The development of the DIGE system: 2D fluorescence difference gel analysis technology (2005) Anal Bioanal Chem, 382, pp. 669-678 Schüpbach, J., Ammann, R.W., Freiburghaus, A.U., A universal method for two-dimensional polyacrylamide gel electrophoresis of membrane proteins using isoelectric focusing on immobilized pH gradients in the first dimension (1991) Anal Biochem, 196, pp. 337-343 Molloy, M.P., Herbert, B.R., Walsh, B.J., Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis (1998) Electrophoresis, 19, pp. 837-844 Deshusses, J.M., Burgess, J.A., Scherl, A., Exploitation of specific properties of trifluoroethanol for extraction and separation of membrane proteins (2003) Proteomics, 3, pp. 1418-1424 Molloy, M.P., Herbert, B.R., Slade, M.B., Proteomic analysis of the Escherichia coh outer membrane (2000) Eur J Biochem, 267, pp. 2871-2881 Gazzana, G., Borlak, J., Improved method for proteome mapping of the liver by 2-DE MALDI-TOF MS (2007) J Proteome Res, 6, pp. 3143-3151 Link, A.J., Eng, J., Schieltz, D.M., Direct analysis of protein complexes using mass spectrometry (1999) Nat Biotechnol, 17, pp. 676-682 Link, A.J., Multidimensional peptide separations in proteomics (2002) Trends Biotechnol, 20 (SUPPL. 12), pp. S8-13 Haas, W., Faherty, B.K., Gerber, S.A., Optimization and use of peptide mass measurement accuracy in shotgun proteomics (2006) Mol Cell Proteomics, 5, pp. 1326-1337 Nesvizhskii, A.I., Protein identification by tandem mass spectrometry and sequence database searching (2007) Methods Mol Biol, 367, pp. 87-119 Gygi, S.P., Rist, B., Gerber, S.A., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags (1999) Nat Biotechnol, 17, pp. 994-999 Goodlett, D.R., Keller, A., Watts, J.D., Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation (2001) Rapid Commun Mass Spectrom, 15, pp. 1214-1221 Ross, P.L., Huang, Y.N., Marchese, J.N., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents (2004) Mol Cell Proteomics, 3, pp. 1154-1169 Schmidt, A., Kellermann, J., Lottspeich, F., A novel strategy for quantitative proteomics using isotope-coded protein labels (2005) Proteomics, 5, pp. 4-15 Bledi, Y., Inberg, A., Linial, M., PROCEED: A proteomic method for analysing plasma membrane proteins in living mammalian cells (2003) Briefings Funct Genomics Proteomics, 2, pp. 254-265 Chen, E.I., Hewel, J., Felding-Habermann, B., Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT) (2006) Mol Cell Proteomics, 5, pp. 53-56 Nunn, B.L., Shaffer, S.A., Scherl, A., Comparison of a Salmonella typhimurium proteome defined by shotgun proteomics directly on an LTQ-FT and by proteome pre-fractionation on an LCQ-DUO (2006) Brief Funct Genomic Proteomic, 5, pp. 154-168 Li, S., Wang, J., Zhang, X., Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys (2004) Biochem J, 384, pp. 119-127 Kubota, K., Kosaka, T., Ichikawa, K., Combination of two-dimensional electrophoresis and shotgun peptide sequencing in comparative proteomics (2005) J Chromatogr B Analyt Technol Biomed Life Sci, 815, pp. 3-9 Wingren, C., Borrebaeck, C.A., High-throughput proteomics using antibody microarrays (2004) Expert Rev Proteomics, 1, pp. 355-364 Dexlin, L., Ingvarsson, J., Frendéus, B., Design of recombinant antibody microarrays for cell surface membrane proteomics (2008) J Proteome Res, 7, pp. 319-327 Davies, D.H., Wyatt, L.S., Newman, F.K., Antibody profiling by proteome microarray reveals the immunogenicity of the attenuated smallpox vaccine, modified vaccinia virus ankara (MVA) is comparable to dryvax(R) (2008) J Virol, 82, pp. 652-663 Sze, S.K., de Kleijn, D.P., Lai, R.C., Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells (2007) Mol Cell Proteomics, 6, pp. 1680-1689 Wingren, C., Ingvarsson, J., Dexlin, L., Design of recombinant antibody microarrays for complex proteome analysis: Choice of sample labeling-tag and solid support (2007) Proteomics, 7, pp. 3055-3065