Artículos de revistas
The Multi-faceted Cross-talk Between The Insulin And Angiotensin Ii Signaling Systems
Registro en:
Diabetes/metabolism Research And Reviews. , v. 22, n. 2, p. 98 - 107, 2006.
15207552
10.1002/dmrr.611
2-s2.0-33644982837
Autor
Velloso L.A.
Folli F.
Perego L.
Saad M.J.A.
Institución
Resumen
Insulin and angiotensin II are hormones that play pivotal roles in the control of two vital and closely related systems, the metabolic and the circulatory systems, respectively. A failure in the proper action of each of these hormones results, to a variable degree, in the development of two highly prevalent and commonly overlapping diseases - diabetes mellitus and hypertension. In recent years, a series of studies has revealed a tight connection between the signal transduction pathways that mediate insulin and angiotensin II actions in target tissues. This molecular cross-talk occurs at multiple levels and plays an important role in phenomena that range from the action of anti-hypertensive drugs to cardiac hypertrophy and energy acquisition by the heart. At the extracellular level, the angiotensin-converting enzyme controls angiotensin II synthesis but also interferes with insulin signaling through the proper regulation of angiotensin II and through the accumulation of bradykinin. At an early intracellular level, angiotensin II, acting through JAK-2/IRS-1/PI3-kinase, JNK and ERK, may induce the serine phosphorylation and inhibition of key elements of the insulin-signaling pathway. Finally, by inducing the expression of the regulatory protein SOCS-3, angiotensin II may impose a late control on the insulin signal. This review will focus on the main advances obtained in this field and will discuss the implications of this molecular cross-talk in the common clinical association between diabetes mellitus and hypertension. Copyright © 2006 John Wiley & Sons, Ltd. 22 2 98 107 Pessin, J.E., Saltiel, A.R., Signaling pathways in insulin action: Molecular targets of insulin resistance (2000) J Clin Invest, 106, pp. 165-169 Kahn, B.B., Flier, J.S., Obesity and insulin resistance (2000) J Clin Invest, 106, pp. 473-481 Olefsky, J.M., Saltiel, A.R., PPAR gamma and the treatment of insulin resistance (2000) Trends Endocrinol Metab, 11, pp. 362-368 Reaven, G., The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals (2004) Endocrinol Metab Clin North Am, 33, pp. 283-303 Wang, C.C., Goalstone, M.L., Draznin, B., Molecular mechanisms of insulin resistance that impact cardiovascular biology (2004) Diabetes, 53, pp. 2735-2740 Reaven, G., Abbasi, F., McLaughlin, T., Obesity, insulin resistance, and cardiovascular disease (2004) Recent Prog Horm Res, 59, pp. 207-223 Natali, A., Ferrannini, E., Hypertension, insulin resistance, and the metabolic syndrome (2004) Endocrinol Metab Clin North Am, 33, pp. 417-429 Shulman, G.I., Cellular mechanisms of insulin resistance in humans (1999) Am J Cardiol, 84, pp. 3J-10J Saltiel, A.R., Kahn, C.R., Insulin signaling and the regulation of glucose and lipid metabolism (2001) Nature, 414, pp. 799-806 Malbon, C.C., Insulin signaling: Putting the 'G-' In protein-protein interactions (2004) Biochem J, 380, pp. e11-e12 Muller, G., Dynamics of plasma membrane microdomains and cross-talk to the insulin signaling cascade (2002) FEBS Lett, 531, pp. 81-87 Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of high Blood Cholesterol in Adults (Adult Treatment Panel III) (2001) JAMA, 285, pp. 2486-2497 Griendling, K.K., Lassegue, B., Murphy, T.J., Alexander, R.W., Angiotensin II receptor pharmacology (1994) Adv Pharmacol, 28, pp. 269-306 Shirai, H., Takahashi, K., Katada, T., Inagami, T., Mapping of G protein coupling sites of the angiotensin II type 1 receptor (1995) Hypertension, 25, pp. 726-730 Bernstein, K.E., Ali, M.S., Sayeski, P.P., Semeniuk, D., Marrero, M.B., New insights into the cellular signaling of seven transmembrane receptors: The role of tyrosine phosphorylation (1998) Lab Invest, 78, pp. 3-7 Sadoshima, J., Versatility of the angiotensin II type 1 receptor (1998) Circ Res, 82, pp. 1352-1355 Ishida, M., Marrero, M.B., Schieffer, B., Ishida, T., Bernstein, K.E., Berk, B.C., Angiotensin II activates pp60c-src in vascular smooth muscle cells (1995) Circ Res, 77, pp. 1053-1059 Sadoshima, J., Izumo, S., The heterotrimeric G q protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes (1996) EMBO J, 15, pp. 775-787 Eguchi, S., Numaguchi, K., Iwasaki, H., Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells (1998) J Biol Chem, 273, pp. 8890-8896 Heeneman, S., Haendeler, J., Saito, Y., Ishida, M., Berk, B.C., Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc (2000) J Biol Chem, 275, pp. 15926-15932 Venema, R.C., Venema, V.J., Eaton, D.C., Marrero, M.B., Angiotensin II-induced tyrosine phosphorylation of signal transducers and activators of transcription 1 is regulated by Janus-activated kinase 2 and Fyn kinases and mitogen-activated protein kinase phosphatase 1 (1998) J Biol Chem, 273, pp. 30795-30800 Mukoyama, M., Nakajima, M., Horiuchi, M., Sasamura, H., Pratt, R.E., Dzau, V.J., Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors (1993) J Biol Chem, 268, pp. 24539-24542 Stoll, M., Unger, T., Angiotensin and its AT2 receptor: New insights into an old system (2001) Regul Pept, 99, pp. 175-182 Carey, R.M., Cardiovascular and renal regulation by the angiotensin type 2 receptor: The AT2 receptor comes of age (2005) Hypertension, 45, pp. 840-844 Huang, X.C., Richards, E.M., Sumners, C., Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors (1996) J Biol Chem, 271, pp. 15635-15641 Zhu, M., Gelband, C.H., Moore, J.M., Posner, P., Sumners, C., Angiotensin II type 2 receptor stimulation of neuronal delayed-rectifier potassium current involves phospholipase A2 and arachidonic acid (1998) J Neurosci, 18, pp. 679-686 Saad, M.J., Carvalho, C.R., Thirone, A.C., Velloso, L.A., Insulin induces tyrosine phosphorylation of JAK2 in insulin-sensitive tissues of the intact rat (1996) J Biol Chem, 271, pp. 22100-22104 Velloso, L.A., Carvalho, C.R., Rojas, F.A., Folli, F., Saad, M.J., Insulin signaling in heart involves insulin receptor substrates-1 and -2, activation of phosphatidylinositol 3-kinase and the JAK 2-growth related pathway (1998) Cardiovasc Res, 40, pp. 96-102 Araujo, E.P., De Souza, C.T., Gasparetti, A.L., Short-term in vivo inhibition of insulin receptor substrate-1 expression leads to insulin resistance, hyperinsulinemia, and increased adiposity (2005) Endocrinology, 146, pp. 1428-1437 Hotamisligil, G.S., Peraldi, P., Budavari, A., Ellis, R., White, M.F., Spiegelman, B.M., IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance (1996) Science, 271, pp. 665-668 Sykiotis, G.P., Papavassiliou, A.G., Serine phosphorylation of insulin receptor substrate-1: A novel target for the reversal of insulin resistance (2001) Mol Endocrinol, 15, pp. 1864-1869 Feldman, R., ACE inhibitors versus AT1 blockers in the treatment of hypertension and syndrome X (2000) Can J Cardiol, 16 (SUPPL. E), pp. 41E-44E Scheen, A.J., Prevention of type 2 diabetes mellitus through inhibition of the Renin-Angiotensin system (2004) Drugs, 64, pp. 2537-2565 Saad, M.J., Velloso, L.A., Carvalho, C.R., Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart (1995) Biochem J, 310, pp. 741-744 Velloso, L.A., Folli, F., Sun, X.J., White, M.F., Saad, M.J., Kahn, C.R., Cross-talk between the insulin and angiotensin signaling systems (1996) Proc Natl Acad Sci U S A, 93, pp. 12490-12495 Folli, F., Kahn, C.R., Hansen, H., Bouchie, J.L., Feener, E.P., Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk (1997) J Clin Invest, 100, pp. 2158-2169 Marrero, M.B., Schieffer, B., Paxton, W.G., Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor (1995) Nature, 375, pp. 247-250 Carvalheira, J.B., Calegari, V.C., Zecchin, H.G., The cross-talk between angiotensin and insulin differentially affects phosphatidylinositol 3-kinase- and mitogen-activated protein kinase-mediated signaling in rat heart: Implications for insulin resistance (2003) Endocrinology, 144, pp. 5604-5614 Carvalho, C.R., Thirone, A.C., Gontijo, J.A., Velloso, L.A., Saad, M.J., Effect of captopril, losartan, and bradykinin on early steps of insulin action (1997) Diabetes, 46, pp. 1950-1957 Tanti, J.F., Gremeaux, T., van Obberghen, E., Le Marchand-Brustel, Y., Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling (1994) J Biol Chem, 269, pp. 6051-6057 Mothe, I., van Obberghen, E., Phosphorylation of insulin receptor substrate-1 on multiple serine residues, 612, 632, 662, and 731, modulates insulin action (1996) J Biol Chem, 271, pp. 11222-11227 Andreozzi, F., Laratta, E., Sciacqua, A., Perticone, F., Sesti, G., Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells (2004) Circ Res, 94, pp. 1211-1218 Jauch, K.W., Hartl, W., Guenther, B., Wicklmayr, M., Rett, K., Dietze, G., Captopril enhances insulin responsiveness of forearm muscle tissue in non-insulin-dependent diabetes mellitus (1987) Eur J Clin Invest, 17, pp. 448-454 Moan, A., Risanger, T., Eide, I., Kjeldsen, S.E., The effect of Angiotensin II receptor blockade on insulin sensitivity and sympathetic nervous system activity in primary hypertension (1994) Blood Press, 3, pp. 185-188 Kurtz, T.W., Pravenec, M., Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and Angiotensin II receptor antagonists: Beyond the renin-angiotensin system (2004) J Hypertens, 22, pp. 2253-2261 Fukuda, N., Satoh, C., Hu, W.Y., Nakayama, M., Kishioka, H., Kanmatsuse, K., Endogenous Angiotensin II suppresses insulin signaling in vascular smooth muscle cells from spontaneously hypertensive rats (2001) J Hypertens, 19, pp. 1651-1658 Damas, J., Garbacki, N., Lefebvre, P.J., The kallikrein-kinin system, angiotensin converting enzyme inhibitors and insulin sensitivity (2004) Diabetes Metab Res Rev, 20, pp. 288-297 Yvan-Charvet, L., Even, P., Bloch-Faure, M., Deletion of the Angiotensin Type 2 Receptor (AT2R) reduces Adipose cell size and protects from diet-induced obesity and Insulin resistance (2005) Diabetes, 54, pp. 991-999 Elbaz, N., Bedecs, K., Masson, M., Sutren, M., Strosberg, A.D., Nahmias, C., Functional trans-inactivation of insulin receptor kinase by growth-inhibitory angiotensin II AT2 receptor (2000) Mol Endocrinol, 14, pp. 795-804 Cui, T.X., Nakagami, H., Nahmias, C., Angiotensin II subtype 2 receptor activation inhibits insulin-induced phosphoinositide 3-kinase and Akt and induces apoptosis in PC12W cells (2002) Mol Endocrinol, 16, pp. 2113-2123 Chiang, S.H., Baumann, C.A., Kanzaki, M., Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10 (2001) Nature, 410, pp. 944-948 Ishizaka, N., Griendling, K.K., Lassegue, B., Alexander, R.W., Angiotensin II type 1 receptor: Relationship with caveolae and caveolin after initial agonist stimulation (1998) Hypertension, 32, pp. 459-466 Leclerc, P.C., Auger-Messier, M., Lanctot, P.M., Escher, E., Leduc, R., Guillemette, G., A polyaromatic caveolin-binding-like motif in the cytoplasmic tail of the type 1 receptor for Angiotensin II plays an important role in receptor trafficking and signaling (2002) Endocrinology, 143, pp. 4702-4710 Wyse, B.D., Prior, I.A., Qian, H., Caveolin interacts with the Angiotensin II type 1 receptor during exocytic transport but not at the plasma membrane (2003) J Biol Chem, 278, pp. 23738-23746 Strous, G.J., van Kerkhof, P., Govers, R., Ciechanover, A., Schwartz, A.L., The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor (1996) EMBO J, 15, pp. 3806-3812 Jiao, H., Berrada, K., Yang, W., Tabrizi, M., Platanias, L.C., Yi, T., Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1 (1996) Mol Cell Biol, 16, pp. 6985-6992 Haque, S.J., Harbor, P., Tabrizi, M., Yi, T., Williams, B.R., Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- And IL-13-dependent signal transduction (1998) J Biol Chem, 273, pp. 33893-33896 You, M., Yu, D.H., Feng, G.S., Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway (1999) Mol Cell Biol, 19, pp. 2416-2424 Chung, C.D., Liao, J., Liu, B., Specific inhibition of Stat3 signal transduction by PIAS3 (1997) Science, 278, pp. 1803-1805 Liu, B., Liao, J., Rao, X., Inhibition of Stat1-mediated gene activation by PIAS1 (1998) Proc Natl Acad Sci USA, 95, pp. 10626-10631 Krebs, D.L., Hilton, D.J., SOCS: Physiological suppressors of cytokine signaling (2000) J Cell Sci, 113, pp. 2813-2819 Yoshimura, A., Ohkubo, T., Kiguchi, T., A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors (1995) EMBO J, 14, pp. 2816-2826 Starr, R., Willson, T.A., Viney, E.M., A family of cytokine-inducible inhibitors of signaling (1997) Nature, 387, pp. 917-921 Endo, T.A., Masuhara, M., Yokouchi, M., A new protein containing an SH2 domain that inhibits JAK kinases (1997) Nature, 387, pp. 921-924 Naka, T., Narazaki, M., Hirata, M., Structure and function of a new STAT-induced STAT inhibitor (1997) Nature, 387, pp. 924-929 Hilton, D.J., Richardson, R.T., Alexander, W.S., Twenty proteins containing a C-terminal SOCS box form five structural classes (1998) Proc Natl Acad Sci U S A, 95, pp. 114-119 Rui, L., Yuan, M., Frantz, D., Shoelson, S., White, M.F., SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2 (2002) J Biol Chem, 277, pp. 42394-42398 Emanuelli, B., Peraldi, P., Filloux, C., Sawka-Verhelle, D., Hilton, D., Van Obberghen, E., SOCS-3 is an insulin-induced negative regulator of insulin signaling (2000) J Biol Chem, 275, pp. 15985-15991 Sadowski, C.L., Choi, T.S., Le, M., Wheeler, T.T., Wang, L.H., Sadowski, H.B., Insulin Induction of SOCS-2 and SOCS-3 mRNA expression in C2C12 Skeletal Muscle Cells Is Mediated by Stat5 (2001) J Biol Chem, 276, pp. 20703-20710 Emanuelli, B., Peraldi, P., Filloux, C., SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice (2001) J Biol Chem, 276, pp. 47944-47949 Calegari, V.C., Bezerra, R.M., Torsoni, M.A., Suppressor of cytokine signaling 3 is induced by Angiotensin II in heart and isolated cardiomyocytes, and participates in desensitization (2003) Endocrinology, 144, pp. 4586-4596 Torsoni, M.A., Carvalheira, J.B., Calegari, V.C., Angiotensin II (AngII) induces the expression of suppressor of cytokine signaling (SOCS)-3 in rat hypothalamus - A mechanism for desensitization of AngII signaling (2004) J Endocrinol, 181, pp. 117-128 Calegari, V.C., Alves, M., Picardi, P.K., Suppressor of cytokine signaling-3 provides a novel interface in the cross-talk between angiotensin II and insulin signaling systems (2005) Endocrinology, 146, pp. 579-588 Ueki, K., Kondo, T., Kahn, C.R., Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms (2004) Mol Cell Biol, 24, pp. 5434-5446 Giorgetti, S., Pelicci, P.G., Pelicci, G., Van Obberghen, E., Involvement of Src-homology/collagen (SHC) proteins in signaling through the insulin receptor and the insulin-like-growth-factor-I-receptor (1994) Eur J Biochem, 223, pp. 195-202 Holt, K.H., Kasson, B.G., Pessin, J.E., Insulin stimulation of a MEK-dependent but ERK-independent SOS protein kinase (1996) Mol Cell Biol, 16, pp. 577-583 Sarbassov, D.D., Peterson, C.A., Insulin receptor substrate-1 and phosphatidylinositol 3-kinase regulate extracellular signal-regulated kinase-dependent and -Independent signaling pathways during myogenic differentiation (1998) Mol Endocrinol, 12, pp. 1870-1878 Eguchi, S., Iwasaki, H., Ueno, H., Intracellular signaling of Angiotensin II-induced p70 S6 kinase phosphorylation at Ser(411) in vascular smooth muscle cells. Possible requirement of epidermal growth factor receptor, Ras, extracellular signal-regulated kinase, and Akt (1999) J Biol Chem, 274, pp. 36843-36851 Werry, T.D., Sexton, P.M., Christopoulos, A., "Ins and outs" Of seven-transmembrane receptor signaling to ERK (2005) Trends Endocrinol Metab, 16, pp. 26-33 Hunyady, L., Turu, G., The role of the AT1 angiotensin receptor in cardiac hypertrophy: Angiotensin II receptor or stretch sensor? (2004) Trends Endocrinol Metab, 15, pp. 405-408 Zou, Y., Komuro, I., Yamazaki, T., Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in Angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes (1996) J Biol Chem, 271, pp. 33592-33597 Zeng, G., Nystrom, F.H., Ravichandran, L.V., Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells (2000) Circulation, 101, pp. 1539-1545 Zecchin, H.G., Bezerra, R.M., Carvalheira, J.B., Insulin signaling pathways in aorta and muscle from two animal models of insulin resistance-obese middle-aged and spontaneously hypertensive rats (2003) Diabetologia, 46, pp. 479-491 Touyz, R.M., Schiffrin, E.L., Signal transduction mechanisms mediating the physiological and pathophysiological actions of Angiotensin II in vascular smooth muscle cells (2000) Pharmacol Rev, 52, pp. 639-672 Kudoh, S., Komuro, I., Mizuno, T., Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats (1997) Circ Res, 80, pp. 139-146 Nickenig, G., Roling, J., Strehlow, K., Schnabel, P., Bohm, M., Insulin induces upregulation of vascular AT1 receptor gene expression by posttranscriptional mechanisms (1998) Circulation, 98, pp. 2453-2460 Banday, A.A., Siddiqui, A.H., Menezes, M.M., Hussain, T., Insulin treatment enhances AT1 receptor function in OK cells (2005) Am J Physiol Renal Physiol, 288, pp. F1213-F1219 Golovchenko, I., Goalstone, M.L., Watson, P., Brownlee, M., Draznin, B., Hyperinsulinemia enhances transcriptional activity of nuclear factor-kappaB induced by Angiotensin II, hyperglycemia, and advanced glycosylation end products in vascular smooth muscle cells (2000) Circ Res, 87, pp. 746-752