Actas de congresos
Towards A Learning Model For Feature Integration In Attention Control
Registro en:
Ieee International Conference On Multisensor Fusion And Integration For Intelligent Systems. , v. , n. , p. 311 - 316, 2001.
2-s2.0-0035555921
Autor
Goncalves L.M.G.
Institución
Resumen
We present current efforts towards an approach for the integration of features extracted from multi-modal sensors, with which to guide the attentional behavior of robotic agents. The model can be applied in many situations and different tasks including top-down or bottom-up aspects of attention control. Basically, a pre-attention mechanism enhances attentional features that are relevant to the current task according to a weight function that can be learned. Then, an attention shift mechanism can select one between the various activated stimuli, in order for a robot to foveate on it. Also, in this approach, we consider the robot moving resources or so to improve the (visual) sensory information.
311 316 Treisman, A., Selective attention in man (1964) British Medical Bulletin Treisman, A., Features and objects in visual processing (1986) Scientific American, 255 (5) Tsotsos, J.K., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F., Modeling visual attention via selective tuning (1995) Artificial Intelligence, 78 (1-2), pp. 507-547. , October Van de Laar, P., Heskes, T.M., Gielen, S., Task-dependent learning of attention (1997) Neural Networks, 10 (6), pp. 981-992. , August Itti, L., Braun, J., Lee, D.K., Koch, C., A model of early visual processing (1998) Proc. of NIPS'98, pp. 173-179. , Cambridge, MA, MIT Press Vandapel, N., Hebert, P., Chatila, R., Active and attentive vision for automatic natural landmark selection (1999) Rapport LAAS-CNRS, N99434. , http://doc.laas.fr:8889/, Octobre Luo, J., Singhal, A., On measuring low-level saliency in photographic images (2000) Proc. of the IEEE IC-CVPR, 1, pp. 84-89. , June, 13-15th, IEEE Computer Society Press Milanese, R., Gil, S., Pun, T., Attentive mechanisms for dynamic and static scene analysis (1995) Optical Engineering, 34 (8) Rybak, I.A., Gusakova, V.I., Golovan, A.V., Podladchikova, L.N., Shevtsova, N.A., A model of attention-guided visual perception and recognition (1998) Vision Research, 38 (2), pp. 387-400 Westelius, C.J., (1995) Focus of Attention and Gaze Control for Robot Vision, , Ph.D. thesis, Linköping University, Sweden, S-581 83 Linköping, Sweden, Dissertation No 379, ISBN 91-7871-530-X Kosslyn, S.M., (1994) Image and Brain. The Resolution of the Imagery Debate, , MIT Press, Cambridge, MA Breazeal, C., Scassellati, B., A context-dependent attention system for a social robot (1999) Proc. of the IJCAI, pp. 1146-1151. , Stockholm, Sweden, July 31 - August 6 Garcia, L.M., Grupen, R., Oliveira, A., Wheeler, D., Fagg, A., Tracing patterns and attention: Humanoid robot cognition (2000) IEEE Intelligent Systems, 15 (4), pp. 70-77. , July/August Sutton, R.S., Barto, A.G., (1998) Reinforcement Learning: An Introduction, , The MIT Press, Cambridge, MA