Artículos de revistas
Chromium Biosorption Using The Residue Of Alginate Extraction From Sargassum Filipendula
Registro en:
Chemical Engineering Journal. , v. 237, n. , p. 362 - 371, 2014.
13858947
10.1016/j.cej.2013.10.024
2-s2.0-84887341705
Autor
Bertagnolli C.
da Silva M.G.C.
Guibal E.
Institución
Resumen
The Brazilian brown seaweed Sargassum filipendula was treated for alginate extraction and the residue was used for removing Cr(VI) and Cr(III) from aqueous solutions. The seaweed was characterized in terms of alginate and residue yields. Alginate and residue contents were 17% and 39%, respectively. Kinetic experiments were carried out and different models were applied in order to elucidate the rate-controlling mechanism: pseudo-first order, pseudo-second order and intra-particle diffusion. The biosorption of Cr(VI) in residue is followed by the reduction of hexavalent to trivalent chromium. The application of Langmuir model to equilibrium data showed a superior maximum biosorption capacity (qmax) for total chromium (0.819mmolg-1) in comparison to trivalent chromium (0.635mmolg-1). The biosorption capacities obtained were close to the values found for the removal of chromium by different species of brown seaweeds. © 2013 Elsevier B.V. 237
362 371 Richard, F.C., Bourg, A.C.M., Aqueous geochemistry of chromium: a review (1991) Water Res., 25, pp. 807-816 Suwalsky, M., Castro, R., Villena, F., Sotomayor, C.P., Cr(III) exerts stronger structural effects than Cr(VI) on the human erythrocyte membrane and molecular models (2008) J. Inorg. Biochem., 102, pp. 842-849 Krishnani, K.K., Ayyappan, S., Heavy metals remediation of water using plants and lignocellulosic agrowastes (2006) Rev. Environ. Contam. Toxicol., 188, pp. 59-84 IARC, Monographs on the evaluation of carcinogenic risks to humans: overall evaluation of carcinogenicity (1987) An updating of IARC Monographs., France Cieslak-Golonka, M., Toxic and mutagenic effects of chromium(VI). A review (1995) Polyhedron, 15, pp. 3667-3689 WHO, Guidelines for drinking-water quality Recommendations (2004)Mohan, D., Pittman, C.U., Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water (2006) J. Hazard. Mater., 137, pp. 762-811 Parga, J.R., Cocke, D.L., Valverde, V., Gomes, J.A.G., Kesmez, M., Moreno, H., Characterization of electrocoagulation for removal of chromium and arsenic (2005) Chem. Eng. Technol., 28, pp. 605-612 Matis, K.A., Mavros, P., Recovery of metals by ion flotation from dilute aqueous solutions (1991) Sep. Purif. Rev., 20, pp. 1-48 Kozlowski, C.A., Walkowiak, W., Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes (2002) Water Res., 36, pp. 4870-4876 Rengaraj, S., Joo, C.K., Kim, Y., Yi, J., Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H (2003) J. Hazard. Mater., 102, pp. 257-275 Miretzky, P., Cirelli, A.F., Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review (2010) J. Hazard. Mater., 180, pp. 1-19 Kratochvil, D., Pimentel, P., Volesky, B., Removal of trivalent and hexavalent chromium by seaweed biosorbent (1998) Environ. Sci. Technol., 32, pp. 2693-2698 Yang, L., Chen, J.P., Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp (2008) Bioresour. Technol., 99, pp. 297-307 Murphy, V., Hughes, H., McLoughlin, P., Comparative study of chromium biosorption by red, green and brown seaweed biomass (2008) Chemosphere, 70, pp. 1128-1134 Bermúdez, Y.G., Rico, I.L.R., Guibal, E., de Hoces, M.C., Martín-Lara, M.A., Biosorption of hexavalent chromium from aqueous solution by Sargassum muticum brown alga. Application of statistical design for process optimization (2012) Chem. Eng. J., 183, pp. 68-76 Volesky, B., Biosorption of heavy metals, Boston (1990)Sharma, A., Gupta, M.N., Three phase partitioning of carbohydrate polymers : separation and purification of alginates (2002) Carbohydr. Polym., 48, pp. 391-395 Nestle, N., Kimmich, R., Heavy metal uptake of alginate gels studied by NMR microscopy (1996) Colloids Surfaces A Physicochem. Eng. Asp., 115, pp. 141-147 Veglio, F., Esposito, A., Reverberi, A.P., Copper adsorption on calcium alginate beads: equilibrium pH-related models (2002) Hydrometallurgy, 65, pp. 43-57 Papageorgiou, S.K., Katsaros, F.K., Kouvelos, E.P., Nolan, J.W., Le Deit, H., Kanellopoulos, N.K., Heavy metal sorption by calcium alginate beads from Laminaria digitata (2006) J. Hazard. Mater., 137, pp. 1765-1772 Davis, T.A., Volesky, B., Mucci, A., A review of the biochemistry of heavy metal biosorption by brown algae (2003) Water Res., 37, pp. 4311-4330 Schenkman, R.P.F., Hypnea musciformis (Rhodophyta): ecological influence on growth (1989) J. Phycol., 25, pp. 192-196 Rocha, S.C.S., Cavalcante, J.D.A., Silva, M.G.C., Pinho, C.G., Influence of the drying conditions of Sargassum sp. alga on the bioadsorption of hexavalent chromium (2006) Environ. Technol., 27, pp. 979-990 Mchugh, D.J., (1987), Production, properties and uses of alginates, ItalyGomez, C.G., Lambrecht, M.V.P., Lozano, J.E., Rinaudo, M., Villar, M.A., Influence of the extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera) (2009) Int. J. Biol. Macromol., 44, pp. 365-371 Figueira, M.M., Volesky, B., Ciminelli, V.S.T., Roddick, F.A., Biosorption of metals in brown seaweed biomass (2000) Water Res., 34, pp. 196-204 Matheickal, J.T., Yu, Q., Biosorption of lead(II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae (1999) Bioresour. Technol., 69, pp. 223-229 Chen, J.P., Yang, L., Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption (2005) Ind. Eng. Chem. Res., 44, pp. 9931-9942 (2007), ASTM D1687-02, Standard Test Methods for Chromium in WaterLagergren, S., Zur theorie der sogenannten adsorption gelöster stoffe (1898) K. Sven. Vetenskapsakademiens Handl., 24, pp. 1-39 Ho, Y., McKay, G., Pseudo-second order model for sorption processes (1999) Process Biochem., 34, pp. 451-465 Weber, W.J., Morris, J.C., (1962), Advances in Water Pollution Research, New YorkBosinco, S., Guibal, E., Roussy, J., le Cloirec, P., Adsorption of hexavalent Chromium on Chitosan beads: sorption isotherms and kinetics (1998) Miner. Process. Extr. Metall. Rev., 19, pp. 277-291 Percival, E.G.V., Mcdowell, R.H., (1967), Chemistry and Enzymology of Marine Algal Polysaccharides, LondonPerez, R., Kaas, R., Campello, F., Arbault, S., Barbaroux, O., (1992) La culture des algues marines dans le monde, , Institut français de recherché pour l'exploitation de la mer, France Kleinübing, S.J., Vieira, R.S., Beppu, M.M., Guibal, E., da Silva, M.G.C., Characterization and evaluation of copper and nickel biosorption on acidic algae Sargassum filipendula (2010) Mater. Res., 13, pp. 541-550 Sheng, P.X., Ting, Y.-P., Chen, J.P., Hong, L., Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms (2004) J. Colloid Interface Sci., 275, pp. 131-141 Fourest, E., Volesky, B., Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans (1996) Environ. Sci. Technol., 30, pp. 277-282 Coluthup, N.B., Daly, L.H., Wiberley, S.E., (1975) Introduction to Infrared and Raman Spectroscopy, third, New York Park, D., Lim, S.-R., Yun, Y.-S., Park, J.M., Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction (2007) Chemosphere, 70, pp. 298-305 Bosinco, S., Roussy, J., Guibal, E., Cloirec, P.L., Interaction mechanisms between hexavalent chromium and corncob (1996) Environ. Technol., 17, pp. 55-62 Murphy, V., Tofail, S., Hughes, H., McLoughlin, P., A novel study of hexavalent chromium detoxification by selected seaweed species using SEM-EDX and XPS analysis (2009) Chem. Eng. J., 148, pp. 425-433 Day, R.A., Underwood, A.L., (1974) Quantitative Analysis, , Fourth, New Jersey Wang, X.S., Li, Z.Z., Sun, C., Removal of Cr(VI) from aqueous solutions by low-cost biosorbents: marine macroalgae and agricultural by-products (2008) J. Hazard. Mater., 153, pp. 1176-1184 Baral, S.S., Das, N., Roy Chaudhury, G., Das, S.N., A preliminary study on the adsorptive removal of Cr(VI) using seaweed, Hydrilla verticillata (2009) J. Hazard. Mater., 171, pp. 358-369 Malash, G.F., El-Khaiary, M.I., Piecewise linear regression: a statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models (2010) Chem. Eng. J., 163, pp. 256-263 Cabatingan, L.K., Agapay, R.C., Rakels, J.L.L., Ottens, M., van der Wielen, L., Potential of biosorption for the recovery of chromate in industrial wastewaters (2001) Ind. Eng. Chem. Res., 40, pp. 2302-2309 Aravindhan, R., Madhan, B., Rao, J.R., Nair, B.U., Ramasami, T., Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse (2004) Environ. Sci. Technol., 38, pp. 300-306 Dittert, I.M., Vilar, V.J.P., Da Silva, E.A.B., De Souza, S.M.A.G.U., De Souza, A.A.U., Botelho, C.M.S., Adding value to marine macro-algae Laminaria digitata through its use in the separation and recovery of trivalent chromium ions from aqueous solution (2012) Chem. Eng. J., pp. 348-357 Plaza Cazón, J., Bernardelli, C., Viera, M., Donati, E., Guibal, E., Zinc and cadmium biosorption by untreated and calcium-treated Macrocystis pyrifera in a batch system (2012) Bioresour. Technol., 116, pp. 195-203 Prabhakaran, S.K., Vijayaraghavan, K., Balasubramanian, R., Removal of Cr(VI) Ions by spent tea and coffee dusts: reduction to Cr(III) and biosorption (2009) Ind. Eng. Chem. Res., 48, pp. 2113-2117 Özer, A., Özer, D., Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats (2003) J. Hazard. Mater., 100, pp. 219-229 Dean, S., Tobin, J.M., Uptake of chromium cations and anions by milled peat, Resour. Conserv. Recycl. (1999), 27, pp. 151-156Gupta, V.K., Gupta, M., Sharma, S., Process development for the removal of lead and chromium from aqueous solutions using red mud an aluminium industry waste (2001) Water Res., 35, pp. 1125-1134 Bernardo, G.-R.R., Rene, R.-M.J., Catalina, A.-D.L.T.M., Chromium (III) uptake by agro-waste biosorbents: chemical characterization, sorption-desorption studies, and mechanism (2009) J. Hazard. Mater., 170, pp. 845-854 Parab, H., Joshi, S., Shenoy, N., Lali, A., Sarma, U.S., Sudersanan, M., Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith (2006) Process Biochem., 41, pp. 609-615 Li, Y.-S., Liu, C.-C., Chiou, C., Adsorption of Cr(III) from wastewater by wine processing waste sludge (2004) J. Colloid Interface Sci., 273, pp. 95-101 Cui, H., Fu, M., Yu, S., Wang, M.K., Reduction and removal of Cr(VI) from aqueous solutions using modified byproducts of beer production (2011) J. Hazard. Mater., 186, pp. 1625-1631 Sivalingam, P.M., Bio-deposited trace metals and mineral content studies of some tropical marine algae (1978) Bot. Mar., 21, pp. 327-330 Siegel, B.Z., Siegel, S.M., The chemical composition of algal cell walls (1973) Crit. Rev. Microbiol., 3, pp. 1-26 Liu, Y., Is the free energy change of adsorption correctly calculated? (2009) J. Chem. Eng. Data, 54, pp. 1981-1985 Raji, C., Anirudhan, T.S., Batch Cr(VI) removal by polyacrylamide-grafted saw-dust: kinetics and thermodynamics (1998) Water Res., 32, pp. 3772-3780 Malik, U.R., Hasany, S.M., Subhani, M.S., Sorptive potential of sunflower stem for Cr(III) ions from aqueous solutions and its kinetic and thermodynamic profile (2005) Talanta, 66, pp. 166-173